The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137320 Coefficients of raising factorial polynomials, T(n,k) = [x^k] p(x, n) where p(x, n) = (m*x + n - 1)*p(x, n - 1) with p[x, 0] = 1, p[x, -1] = 0, p[x, 1] = m*x and m = 2. Triangle read by rows, for n >= 0 and 0 <= k <= n. 1
1, 0, 2, 0, 2, 4, 0, 4, 12, 8, 0, 12, 44, 48, 16, 0, 48, 200, 280, 160, 32, 0, 240, 1096, 1800, 1360, 480, 64, 0, 1440, 7056, 12992, 11760, 5600, 1344, 128, 0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Row sums are factorials.
Also the Bell transform of A052849 (with a(0)=2). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62-63
LINKS
FORMULA
From Peter Luschny, Feb 26 2019: (Start)
p(n, x) = n!*Sum_{k=0..n} (-1)^n*binomial(-x, k)*binomial(-x, n-k).
p(n, x) = (n + 2*x - 1)!/(2*x - 1)!.
T(n, k) = [x^k] p(n,x). (End)
EXAMPLE
[0] {1},
[1] {0, 2},
[2] {0, 2, 4},
[3] {0, 4, 12, 8},
[4] {0, 12, 44, 48, 16},
[5] {0, 48, 200, 280, 160, 32},
[6] {0, 240, 1096, 1800, 1360, 480, 64},
[7] {0, 1440, 7056, 12992, 11760, 5600, 1344, 128},
[8] {0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256},
[9] {0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512}.
MAPLE
# The function BellMatrix is defined in A264428.
BellMatrix(n -> `if`(n<2, 2, 2*n!), 8); # Peter Luschny, Jan 27 2016
p := (n, x) -> (n + 2*x - 1)!/(2*x - 1)!:
seq(seq(coeff(expand(p(n, x)), x, k), k=0..n), n=0..9); # Peter Luschny, Feb 26 2019
MATHEMATICA
m = 2; p[x, 0] = 1; p[x, -1] = 0; p[x, 1] = m*x;
p[x_, n_] := p[x, n] = (m*x + n - 1)*p[x, n - 1];
Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, If[n < 2, 2, 2*n!]], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
CROSSREFS
Apart from signs, same as A137312.
Sequence in context: A126440 A131186 A137312 * A263399 A143507 A172040
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 20 2008
EXTENSIONS
Edited and offset set to 0 by Peter Luschny, Feb 26 2019
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 15:23 EDT 2024. Contains 372738 sequences. (Running on oeis4.)