This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137320 Coefficients of raising factorial polynomials, T(n,k) = [x^k] p(x, n) where p(x, n) = (m*x + n - 1)*p(x, n - 1) with p[x, 0] = 1, p[x, -1] = 0, p[x, 1] = m*x and m = 2. Triangle read by rows, for n >= 0 and 0 <= k <= n. 1
 1, 0, 2, 0, 2, 4, 0, 4, 12, 8, 0, 12, 44, 48, 16, 0, 48, 200, 280, 160, 32, 0, 240, 1096, 1800, 1360, 480, 64, 0, 1440, 7056, 12992, 11760, 5600, 1344, 128, 0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Row sums are factorials. Also the Bell transform of A052849 (with a(0)=2). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016 REFERENCES Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62-63 LINKS FORMULA From Peter Luschny, Feb 26 2019: (Start) p(n, x) = n!*Sum_{k=0..n} (-1)^n*binomial(-x, k)*binomial(-x, n-k). p(n, x) = (n + 2*x - 1)!/(2*x - 1)!. T(n, k) = [x^k] p(n,x). (End) EXAMPLE [0] {1}, [1] {0, 2}, [2] {0, 2,     4}, [3] {0, 4,     12,     8}, [4] {0, 12,    44,     48,     16}, [5] {0, 48,    200,    280,    160,     32}, [6] {0, 240,   1096,   1800,   1360,    480,    64}, [7] {0, 1440,  7056,   12992,  11760,   5600,   1344,   128}, [8] {0, 10080, 52272,  105056, 108304,  62720,  20608,  3584,  256}, [9] {0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512}. MAPLE # The function BellMatrix is defined in A264428. BellMatrix(n -> `if`(n<2, 2, 2*n!), 8); # Peter Luschny, Jan 27 2016 p := (n, x) -> (n + 2*x - 1)!/(2*x - 1)!: seq(seq(coeff(expand(p(n, x)), x, k), k=0..n), n=0..9); # Peter Luschny, Feb 26 2019 MATHEMATICA m = 2; p[x, 0] = 1; p[x, -1] = 0; p[x, 1] = m*x; p[x_, n_] := p[x, n] = (m*x + n - 1)*p[x, n - 1]; Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten (* Second program: *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[Function[n, If[n < 2, 2, 2*n!]], rows = 12]; Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *) CROSSREFS Apart from signs, same as A137312. Sequence in context: A126440 A131186 A137312 * A263399 A143507 A071961 Adjacent sequences:  A137317 A137318 A137319 * A137321 A137322 A137323 KEYWORD nonn,tabl AUTHOR Roger L. Bagula, Apr 20 2008 EXTENSIONS Edited and offset set to 0 by Peter Luschny, Feb 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 01:57 EST 2019. Contains 329948 sequences. (Running on oeis4.)