login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137320
Coefficients of raising factorial polynomials, T(n,k) = [x^k] p(x, n) where p(x, n) = (m*x + n - 1)*p(x, n - 1) with p[x, 0] = 1, p[x, -1] = 0, p[x, 1] = m*x and m = 2. Triangle read by rows, for n >= 0 and 0 <= k <= n.
1
1, 0, 2, 0, 2, 4, 0, 4, 12, 8, 0, 12, 44, 48, 16, 0, 48, 200, 280, 160, 32, 0, 240, 1096, 1800, 1360, 480, 64, 0, 1440, 7056, 12992, 11760, 5600, 1344, 128, 0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512
OFFSET
0,3
COMMENTS
Row sums are factorials.
Also the Bell transform of A052849 (with a(0)=2). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016
REFERENCES
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62-63
FORMULA
From Peter Luschny, Feb 26 2019: (Start)
p(n, x) = n!*Sum_{k=0..n} (-1)^n*binomial(-x, k)*binomial(-x, n-k).
p(n, x) = (n + 2*x - 1)!/(2*x - 1)!.
T(n, k) = [x^k] p(n,x). (End)
EXAMPLE
[0] {1},
[1] {0, 2},
[2] {0, 2, 4},
[3] {0, 4, 12, 8},
[4] {0, 12, 44, 48, 16},
[5] {0, 48, 200, 280, 160, 32},
[6] {0, 240, 1096, 1800, 1360, 480, 64},
[7] {0, 1440, 7056, 12992, 11760, 5600, 1344, 128},
[8] {0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256},
[9] {0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512}.
MAPLE
# The function BellMatrix is defined in A264428.
BellMatrix(n -> `if`(n<2, 2, 2*n!), 8); # Peter Luschny, Jan 27 2016
p := (n, x) -> (n + 2*x - 1)!/(2*x - 1)!:
seq(seq(coeff(expand(p(n, x)), x, k), k=0..n), n=0..9); # Peter Luschny, Feb 26 2019
MATHEMATICA
m = 2; p[x, 0] = 1; p[x, -1] = 0; p[x, 1] = m*x;
p[x_, n_] := p[x, n] = (m*x + n - 1)*p[x, n - 1];
Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten
(* Second program: *)
BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
B = BellMatrix[Function[n, If[n < 2, 2, 2*n!]], rows = 12];
Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
CROSSREFS
Apart from signs, same as A137312.
Sequence in context: A126440 A131186 A137312 * A263399 A143507 A172040
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 20 2008
EXTENSIONS
Edited and offset set to 0 by Peter Luschny, Feb 26 2019
STATUS
approved