Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Feb 26 2019 19:15:49
%S 1,0,2,0,2,4,0,4,12,8,0,12,44,48,16,0,48,200,280,160,32,0,240,1096,
%T 1800,1360,480,64,0,1440,7056,12992,11760,5600,1344,128,0,10080,52272,
%U 105056,108304,62720,20608,3584,256,0,80640,438336,944992,1076544,718368,290304,69888,9216,512
%N Coefficients of raising factorial polynomials, T(n,k) = [x^k] p(x, n) where p(x, n) = (m*x + n - 1)*p(x, n - 1) with p[x, 0] = 1, p[x, -1] = 0, p[x, 1] = m*x and m = 2. Triangle read by rows, for n >= 0 and 0 <= k <= n.
%C Row sums are factorials.
%C Also the Bell transform of A052849 (with a(0)=2). For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 27 2016
%D Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 62-63
%F From _Peter Luschny_, Feb 26 2019: (Start)
%F p(n, x) = n!*Sum_{k=0..n} (-1)^n*binomial(-x, k)*binomial(-x, n-k).
%F p(n, x) = (n + 2*x - 1)!/(2*x - 1)!.
%F T(n, k) = [x^k] p(n,x). (End)
%e [0] {1},
%e [1] {0, 2},
%e [2] {0, 2, 4},
%e [3] {0, 4, 12, 8},
%e [4] {0, 12, 44, 48, 16},
%e [5] {0, 48, 200, 280, 160, 32},
%e [6] {0, 240, 1096, 1800, 1360, 480, 64},
%e [7] {0, 1440, 7056, 12992, 11760, 5600, 1344, 128},
%e [8] {0, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256},
%e [9] {0, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512}.
%p # The function BellMatrix is defined in A264428.
%p BellMatrix(n -> `if`(n<2,2,2*n!), 8); # _Peter Luschny_, Jan 27 2016
%p p := (n,x) -> (n + 2*x - 1)!/(2*x - 1)!:
%p seq(seq(coeff(expand(p(n,x)), x, k), k=0..n), n=0..9); # _Peter Luschny_, Feb 26 2019
%t m = 2; p[x, 0] = 1; p[x, -1] = 0; p[x, 1] = m*x;
%t p[x_, n_] := p[x, n] = (m*x + n - 1)*p[x, n - 1];
%t Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten
%t (* Second program: *)
%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t B = BellMatrix[Function[n, If[n < 2, 2, 2*n!]], rows = 12];
%t Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)
%Y Apart from signs, same as A137312.
%K nonn,tabl
%O 0,3
%A _Roger L. Bagula_, Apr 20 2008
%E Edited and offset set to 0 by _Peter Luschny_, Feb 26 2019