The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137312 Coefficients of generalized factorial polynomials p(x, n) = (x/a - (n-1))*p(x, n-1) with p(x, 0) = 1, p(x, 1) = x/a and a = 1/2. Triangle read by rows, for n >= 0 and 0 <= k <= n. 1
 1, 0, 2, 0, -2, 4, 0, 4, -12, 8, 0, -12, 44, -48, 16, 0, 48, -200, 280, -160, 32, 0, -240, 1096, -1800, 1360, -480, 64, 0, 1440, -7056, 12992, -11760, 5600, -1344, 128, 0, -10080, 52272, -105056, 108304, -62720, 20608, -3584, 256, 0, 80640, -438336, 944992, -1076544, 718368, -290304, 69888, -9216, 512 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The polynomials are defined by a recurrence given by S. Roman (see reference). REFERENCES Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 56-57. LINKS Table of n, a(n) for n=0..54. FORMULA From Peter Luschny, Feb 26 2019: (Start) p(x, n) = n!*Sum_{k=0..n} binomial(x, k)*binomial(x, n-k). p(x, n) = (-1)^n*(n - 2*x - 1)!/(-2*x - 1)!. T(n, k) = [x^k] p(x, n). (End) EXAMPLE [0] {1}, [1] {0, 2}, [2] {0, -2, 4}, [3] {0, 4, -12, 8}, [4] {0, -12, 44, -48, 16}, [5] {0, 48, -200, 280, -160, 32}, [6] {0, -240, 1096, -1800, 1360, -480, 64}, [7] {0, 1440, -7056, 12992, -11760, 5600, -1344, 128}, [8] {0, -10080, 52272, -105056, 108304, -62720, 20608, -3584, 256}, [9] {0, 80640, -438336, 944992, -1076544, 718368, -290304, 69888, -9216, 512}. . Row sums start: 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, ... MAPLE BellMatrix(n -> `if`(n<2, (-1)^n*2, (-1)^n*2*n!), 8); # Peter Luschny, Jan 27 2016 p := (n, x) -> ((-1)^n*(n - 2*x - 1)!)/((-2*x - 1)!): seq(seq(coeff(expand(p(n, x)), x, k), k=0..n), n=0..9); # Peter Luschny, Feb 26 2019 MATHEMATICA a = 1/2; p[x, 0] = 1; p[x, 1] = x/a; p[x_, n_] := p[x, n] = (x/a - (n - 1))*p[x, n - 1]; Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten (* Second program: *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[Function[n, If[n < 2, (-1)^n*2, (-1)^n*2*n!]], rows = 12]; Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *) CROSSREFS Apart from signs, same as A137320. Sequence in context: A209697 A126440 A131186 * A137320 A263399 A143507 Adjacent sequences: A137309 A137310 A137311 * A137313 A137314 A137315 KEYWORD tabl,sign AUTHOR Roger L. Bagula, Apr 20 2008 EXTENSIONS Edited and offset set to 0 by Peter Luschny, Feb 26 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 07:43 EDT 2024. Contains 371799 sequences. (Running on oeis4.)