The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A137312 Coefficients of generalized factorial polynomials p(x, n) = (x/a - (n-1))*p(x, n-1) with p(x, 0) = 1, p(x, 1) = x/a and a = 1/2. Triangle read by rows, for n >= 0 and 0 <= k <= n. 1

%I #14 Feb 26 2019 19:15:40

%S 1,0,2,0,-2,4,0,4,-12,8,0,-12,44,-48,16,0,48,-200,280,-160,32,0,-240,

%T 1096,-1800,1360,-480,64,0,1440,-7056,12992,-11760,5600,-1344,128,0,

%U -10080,52272,-105056,108304,-62720,20608,-3584,256,0,80640,-438336,944992,-1076544,718368,-290304,69888,-9216,512

%N Coefficients of generalized factorial polynomials p(x, n) = (x/a - (n-1))*p(x, n-1) with p(x, 0) = 1, p(x, 1) = x/a and a = 1/2. Triangle read by rows, for n >= 0 and 0 <= k <= n.

%C The polynomials are defined by a recurrence given by S. Roman (see reference).

%D Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 56-57.

%F From _Peter Luschny_, Feb 26 2019: (Start)

%F p(x, n) = n!*Sum_{k=0..n} binomial(x, k)*binomial(x, n-k).

%F p(x, n) = (-1)^n*(n - 2*x - 1)!/(-2*x - 1)!.

%F T(n, k) = [x^k] p(x, n). (End)

%e [0] {1},

%e [1] {0, 2},

%e [2] {0, -2, 4},

%e [3] {0, 4, -12, 8},

%e [4] {0, -12, 44, -48, 16},

%e [5] {0, 48, -200, 280, -160, 32},

%e [6] {0, -240, 1096, -1800, 1360, -480, 64},

%e [7] {0, 1440, -7056, 12992, -11760, 5600, -1344, 128},

%e [8] {0, -10080, 52272, -105056, 108304, -62720, 20608, -3584, 256},

%e [9] {0, 80640, -438336, 944992, -1076544, 718368, -290304, 69888, -9216, 512}.

%e .

%e Row sums start: 1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, ...

%p BellMatrix(n -> `if`(n<2,(-1)^n*2,(-1)^n*2*n!), 8); # _Peter Luschny_, Jan 27 2016

%p p := (n, x) -> ((-1)^n*(n - 2*x - 1)!)/((-2*x - 1)!):

%p seq(seq(coeff(expand(p(n,x)), x, k), k=0..n), n=0..9); # _Peter Luschny_, Feb 26 2019

%t a = 1/2; p[x, 0] = 1; p[x, 1] = x/a;

%t p[x_, n_] := p[x, n] = (x/a - (n - 1))*p[x, n - 1];

%t Table[CoefficientList[p[x, n], x], {n, 0, 9}] // Flatten

%t (* Second program: *)

%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

%t B = BellMatrix[Function[n, If[n < 2, (-1)^n*2, (-1)^n*2*n!]], rows = 12];

%t Table[B[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* _Jean-Fran├žois Alcover_, Jun 28 2018, after _Peter Luschny_ *)

%Y Apart from signs, same as A137320.

%K tabl,sign

%O 0,3

%A _Roger L. Bagula_, Apr 20 2008

%E Edited and offset set to 0 by _Peter Luschny_, Feb 26 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 22:16 EDT 2024. Contains 372741 sequences. (Running on oeis4.)