The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263399 Number of ordered pairs (k, m) with 0 < m < n and |k| < prime(m)^2 such that (k+prime(m+1)^2)/(k+prime(m)^2) = (k+prime(n+1)^2)/(k+prime(n)^2). 2
 0, 0, 0, 1, 0, 2, 0, 2, 4, 0, 5, 2, 0, 3, 3, 2, 0, 1, 0, 0, 4, 2, 4, 4, 2, 0, 2, 0, 2, 3, 1, 7, 0, 3, 0, 6, 2, 1, 6, 3, 0, 7, 0, 3, 0, 6, 5, 4, 0, 2, 3, 0, 8, 6, 6, 2, 0, 4, 4, 0, 6, 5, 2, 0, 2, 3, 3, 8, 0, 7, 2, 6, 5, 5, 1, 2, 6, 3, 9, 8, 0, 3, 0, 0, 3, 4, 3, 3, 0, 0, 10, 5, 2, 8, 1, 6, 4, 0, 12, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS Conjecture: Let k, m and n be integers with 0 < m < n and -2*prime(m) < k <= 2*prime(m). If (k+prime(m+1)^2)/(k+prime(m)^2) = (k+prime(n+1)^2)/(k+prime(n)^2), then we must have k = -9, m = 5 and n = 11. We have verified this for n up to 2000. The conjecture essentially implies that for each k = -3..10 all the ratios (prime(n+1)^2+k)/(prime(n)^2+k) (n = 1,2,...) are pairwise distinct. We have verified that for any k = -1, 1 the ratios (prime(n+1)^2+k)/(prime(n)^2+k) (n = 1..110000) are indeed pairwise distinct. LINKS Zhi-Wei Sun, Table of n, a(n) for n = 1..150 EXAMPLE a(4) = 1 since (prime(5)^2-13)/prime(4)^2-13) = (11^2-13)/(7^2-13) = 3 = (7^2-13)/(5^2-13) = (prime(4)^2-13)/(prime(3)^2-13). a(12) = 2 since (prime(13)^2+35)/(prime(12)^2+35) = (41^2+35)/(37^2+35) = 11/9 = (19^2+35)/(17^2+35) = (prime(8)^2+35)/(prime(7)^2+35), and (prime(13)^2-511)/(prime(12)^2-511) = (41^2-511)/(37^2-511) = 15/11 = (31^2-511)/(29^2-511) = (prime(11)^2-511)/(prime(10)^2-511). Note that 35 = 2*prime(7)+1. a(22) = 2 since (prime(23)^2-85)/(prime(22)^2-85) = (83^2-85)/(79^2-85) = 21/19 = (43^2-85)/(41^2-85) = (prime(14)^2-85)/(prime(13)^2-85), and (prime(23)^2-4081)/(prime(22)^2-4081) = (83^2-4081)/(79^2-4081) = 13/10 = (73^2-4081)/(71^2-4081) = (prime(21)^2-4081)/(prime(20)^2-4081). Note that -85 = -2*prime(13)-3. MATHEMATICA p[n_]:=p[n]=Prime[n] f[k_, n_]:=f[k, n]=(k+p[n+1]^2)/(k+p[n]^2) Do[r=0; Do[If[f[k, m]==f[k, n], r=r+1], {m, 1, n-1}, {k, 1-p[m]^2, p[m]^2-1}]; Print[n, " ", r]; Continue, {n, 1, 100}] CROSSREFS Cf. A000040, A000290, A001248. Sequence in context: A131186 A137312 A137320 * A143507 A172040 A317327 Adjacent sequences: A263396 A263397 A263398 * A263400 A263401 A263402 KEYWORD nonn AUTHOR Zhi-Wei Sun, Oct 16 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 01:34 EDT 2024. Contains 372900 sequences. (Running on oeis4.)