

A137317


Array T(n,m) = 1 + (n+m2) mod 26, 1 <= n,m <= 26, read by rows or columns.


2



1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The pattern arises if one assigns numbers A=1 up to Z=26 to the letters in the 26 X 26 Vigenere square, which contains A to Z in the first row and circular shifts in the followup rows (that is, B..Z,A in the 2nd, C...Z,A,B in the 3rd etc.).


REFERENCES

Blaise de Vigenere, Traicte des chiffres ou secretes manieres d'ecrire. Paris. Abel L'Angelier (1586). Section 343, (1)ff, "Separated illustrations". Based on Bellaso, 1553.


LINKS

Nathaniel Johnston, Rows 1..26, flattened (full sequence)


EXAMPLE

The array begins:
1 2 3 4 5 6 7 8 9 10 ...
2 3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11 12
4 5 6 7 8 9 10 11 12 13
5 6 7 8 9 10 11 12 13 14
6 7 8 9 10 11 12 13 14 15
7 8 9 10 11 12 13 14 15 16
8 9 10 11 12 13 14 15 16 17
...


MAPLE

for n from 1 to 26 do seq(1 + ((n+m2) mod 26), m=1..26); od; # Nathaniel Johnston, Jun 23 2011


MATHEMATICA

Flatten[Table[1+Mod[n+m2, 26], {n, 10}, {m, 26}]] (* Harvey P. Dale, Feb 05 2012 *)


CROSSREFS

Sequence in context: A030545 A295886 A318893 * A308702 A326200 A094759
Adjacent sequences: A137314 A137315 A137316 * A137318 A137319 A137320


KEYWORD

nonn,tabf,less,fini,full,word


AUTHOR

Paul Curtz, Apr 06 2008


EXTENSIONS

Edited by R. J. Mathar, Aug 06 2008


STATUS

approved



