OFFSET
2,1
COMMENTS
The sequence is obviously increasing. It seems that a(2n+1) = a(2n) for n > 1. Is there a simple proof? Is there a simple way to construct a(n)? Notice the pattern in base N, e.g., 130 = 10000010_2 = 11211_3 = 2002_4 = 1010_5 = 334_6 = 244_7 = 202_8 = 154_9 = 109_11 = {10}{10}_12 = {10}0_13.
LINKS
"Davar55" on mersenneforum.org, Puzzles / "Sum of digits".
EXAMPLE
a(2)=3 since 1=1_2, 2=10_2, so 3=11_2 is the number > 0 with even digit sum (1+1) in base 2.
a(3)=6 since 4=100_2, 5=12_3, so 6=20_3=110_2 is the least N > 0 with even digit sum in base 2 and in base 3.
a(4)=a(5)=10=1010_2=101_3=22_4=20_5 is the least N > 0 having even digit sum in bases 2 through 4 and has so also in base 5.
PROG
CROSSREFS
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Dec 06 2007
EXTENSIONS
Corrected example a(3)=5 to a(3)=6 David Yablon (davar55(AT)yahoo.com), Mar 19 2010
STATUS
approved