login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135739
Numbers n such that n+reverse(n) has only odd decimal digits (n not a multiple of 10).
1
12, 14, 16, 18, 21, 23, 25, 27, 32, 34, 36, 41, 43, 45, 52, 54, 61, 63, 72, 81, 209, 219, 229, 239, 249, 308, 318, 328, 338, 348, 407, 409, 417, 419, 427, 429, 437, 439, 447, 449, 506, 508, 516, 518, 526, 528, 536, 538, 546, 548, 605, 607, 609, 615, 617, 619
OFFSET
1,1
COMMENTS
Obviously n is in the sequence iff reverse(n) is in the sequence.
EXAMPLE
409 + 904 = 1313 has only odd digits, so 409 and 904 are in the sequence.
MATHEMATICA
odQ[n_]:=Module[{t=Count[IntegerDigits[n+FromDigits[Reverse[IntegerDigits[n]]]], _?EvenQ]}, t==0&&!Divisible[n, 10]]; Select[Range[700], odQ] (* Harvey P. Dale, Feb 20 2013 *)
PROG
(PARI) reverse(n, m)=n=[n]; while(n=divrem(n[1], 10), m=10*m+n[2]); m odd=Vec("13579"); for(i=1, 999, i%10&!setminus(Set(Vec(Str(i+reverse(i)))), odd)&print1(i", "))
(Python)
def ok(n): return n%10 and set(str(n + int(str(n)[::-1]))) <= set("13579")
print([k for k in range(620) if ok(k)]) # Michael S. Branicky, Aug 15 2022
CROSSREFS
Sequence in context: A290001 A371422 A080693 * A096923 A141642 A163622
KEYWORD
base,easy,nonn
AUTHOR
M. F. Hasler, Dec 01 2007, Dec 05 2007
STATUS
approved