The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A135740 Maximal sum of decimal digits of a^b for 1 <= a,b <= n. 1
 1, 4, 9, 13, 13, 27, 36, 37, 45, 45, 62, 64, 71, 97, 99, 99, 109, 117, 127, 136, 136, 148, 153, 163, 171, 197, 197, 202, 224, 224, 236, 236, 251, 256, 281, 281, 302, 302, 306, 306, 315, 352, 352, 355, 360, 385, 385, 396, 406, 406, 431, 432, 437, 441, 469, 469 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Clearly a(n) <= a(n+1). For what values of n do we have equality? Is there an explicit formula for a(n)? LINKS EXAMPLE a(3)=9=2+7 is the digit sum of 3^2 and 3^3=27, all other a^b with a,b <= 3 have smaller digit sum. a(4)=13=2+5+6 is the digit sum of 4^4=256, all other a^b with a,b <= 4 have smaller digit sum. a(5)=13 since also for a,b <= 5 there is no higher digit sum (but the same is obtained for 5^4=625). MATHEMATICA a = {1}; For[n = 2, n < 100, n++, r = a[[ -1]]; For[j = 1, j < n + 1, j++, If[Max[Plus @@ IntegerDigits[n^j], Plus @@ IntegerDigits[j^n]] > r, r = Max[Plus @@ IntegerDigits[n^j], Plus @@ IntegerDigits[j^n]]]]; AppendTo[a, r]]; a (* Stefan Steinerberger, Dec 22 2007 *) PROG (PARI) digitsum(n, s)=n=[n]; while(n, n=divrem(n[1], 10); s+=n[2]); s A135740(n)=vecmax(matrix(n, n, i, j, digitsum(i^j))) CROSSREFS Sequence in context: A125848 A225752 A066588 * A312870 A312871 A247881 Adjacent sequences: A135737 A135738 A135739 * A135741 A135742 A135743 KEYWORD base,nonn AUTHOR M. F. Hasler, Nov 30 2007 EXTENSIONS More terms from Stefan Steinerberger, Dec 22 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 13:02 EST 2022. Contains 358656 sequences. (Running on oeis4.)