login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135202
Numbers n that raised to the powers from 1 to k (with k>=1) are multiples of the sum of their digits (n raised to k+1 must not be a multiple). Case k=17.
17
3900, 39000, 390000, 3900000, 12432420, 16528050, 19211220, 28845180, 29549520, 29895180, 34310100, 34899480, 36659700, 39000000, 39159120, 48452040, 51092580, 53295000, 66156090, 83393310, 95416230, 100960860, 109052580, 117865440, 124324200
OFFSET
1,1
FORMULA
Positive integers n such that A195860(n)=18.
EXAMPLE
3900^1=3900 is multiple of Sum_digits(3900)=12
3900^2=15210000 is multiple of Sum_digits(3900^2)=9
...
3900^17 is a multiple of Sum_digits(3900^17)=108
while
3900^18 is not multiple of Sum_digits(3900^18)=99
MAPLE
readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(50000, 17);
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Terms a(4) onward from Max Alekseyev, Sep 24 2011
STATUS
approved