login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135197
Numbers n that raised to the powers from 1 to k (with k>=1) are multiple of the sum of their digits (n raised to k+1 must not be a multiple). Case k=12.
12
90, 120, 900, 1200, 3480, 4650, 5700, 7140, 9000, 12000, 13140, 13260, 21180, 21660, 25320, 28560, 30720, 33660, 34800, 41580, 46500, 57000, 60690, 71400, 81420, 88110, 90000, 108450, 120000, 131400, 132600, 145710, 211800, 216180, 216600, 224490
OFFSET
1,1
FORMULA
Positive integers n such that A195860(n)=13.
EXAMPLE
90^1=90 is multiple of Sum_digits(90)=9
90^2=8100 is multiple of Sum_digits(8100)=9
etc. till
90^12=282429536481000000000000 is multiple of Sum_digits(282429536481000000000000)=54
while
90^13=25418658283290000000000000 is not multiple of Sum_digits(25418658283290000000000000)=63
MAPLE
readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(25000, 12);
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Terms a(15) onward from Max Alekseyev, Sep 24 2011
STATUS
approved