login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135199
Numbers n that raised to the powers from 1 to k (with k>=1) are multiples of the sum of their digits (and n raised to k+1 must not be such a multiple). Case k=14.
12
60, 150, 600, 1500, 3390, 4320, 6000, 9240, 15000, 33900, 43200, 51810, 60000, 92400, 150000, 288750, 339000, 432000, 518100, 600000, 612150, 686070, 794640, 924000, 1043460, 1122450, 1225350, 1305150, 1483020, 1500000, 1711710, 2125620, 2174970
OFFSET
1,1
FORMULA
Positive integers n such that A195860(n)=15.
EXAMPLE
60^1=60 is multiple of Sum_digits(60)=6
60^2=3600 is multiple of Sum_digits(3600)=9
...
60^14=7836416409600000000000000 is a multiple of Sum_digits(7836416409600000000000000)=54
while
60^15=470184984576000000000000000 is not multiple of Sum_digits(470184984576000000000000000)=63
MAPLE
readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(30000, 14);
MATHEMATICA
msdQ[n_]:=Module[{b=Boole[Divisible[#, Total[IntegerDigits[#]]]&/@(n^Range[ 15])]}, Total[b]==14&&Last[b]==0]; Select[Range[22*10^5], msdQ] (* Harvey P. Dale, Apr 07 2019 *)
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Sep 24 2011
Definition clarified by Harvey P. Dale, Apr 07 2019
STATUS
approved