login
A135198
Numbers n that raised to the powers from 1 to k (with k>=1) are multiple of the sum of their digits (n raised to k+1 must not be a multiple). Case k=13.
12
780, 1890, 4620, 5040, 7800, 12360, 18900, 20610, 22950, 46200, 50400, 61950, 74550, 78000, 90090, 107730, 123600, 128520, 144060, 189000, 206100, 212940, 220290, 229500, 247170, 273210, 301410, 323190, 416430, 427980, 433650, 462000, 504000
OFFSET
1,1
FORMULA
Positive integers n such that A195860(n)=14.
EXAMPLE
780^1=780 is multiple of Sum_digits(780)=15
780^2=608400 is multiple of Sum_digits(608400)=18
etc. till
780^13=39557590922648009090580480000000000000 is a multiple of Sum_digits(39557590922648009090580480000000000000)=117
while
780^14=30854920919665447090652774400000000000000 is not multiple of Sum_digits(30854920919665447090652774400000000000000)=126
MAPLE
readlib(log10); P:=proc(n, m) local a, i, k, w, x, ok; for i from 1 by 1 to n do a:=simplify(log10(i)); if not (trunc(a)=a) then ok:=1; x:=1; while ok=1 do w:=0; k:=i^x; while k>0 do w:=w+k-(trunc(k/10)*10); k:=trunc(k/10); od; if trunc(i^x/w)=i^x/w then x:=x+1; else if x-1=m then print(i); fi; ok:=0; fi; od; fi; od; end: P(25000, 13);
KEYWORD
nonn,base
AUTHOR
EXTENSIONS
Terms a(10) onward from Max Alekseyev, Sep 24 2011
STATUS
approved