login
A135203
For any integer n >= 1 the sequence gives the minimum power x for which n^x+(n-1)^x+(n-2)^x+...+1^x produces a perfect square.
1
1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
OFFSET
1,2
COMMENTS
All 3's apart from 1's in positions given by A001108 and 2 for n=24.
LINKS
EXAMPLE
n=4 -> 4^3+3^3+2^3+1^3 = 64+27+8+1 = 100
n=5 -> 5^3+4^3+3^3+2^3+1^3 = 125+64+27+8+1 = 225
n=6 -> 6^3+5^3+4^3+3^3+2^3+1^3 = 216+125+64+27+8+1 = 441
MAPLE
P:=proc(n) local a, i, k, j, ok, x; for i from 1 by 1 to n do x:=1; ok:=1; while ok=1 do a:=0; k:=i; while k>0 do a:=a+k^x; k:=k-1; od; if (trunc(sqrt(a)))^2=a then print(x); ok:=0; else x:=x+1; fi; od; od; end: P(100);
PROG
(PARI) A135203(n) = for(x=1, oo, if(issquare(sum(k=1, n, k^x)), return(x))); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
Cf. A001108.
Sequence in context: A251551 A073139 A122845 * A251552 A379054 A324497
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Offset and a typo in the definition corrected by Antti Karttunen, Sep 27 2018
STATUS
approved