login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132883
Triangle read by rows: T(n,k) is the number of paths in the first quadrant from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k U steps (0 <= k <= floor(n/2)).
1
1, 1, 2, 1, 3, 3, 5, 9, 2, 8, 22, 10, 13, 51, 40, 5, 21, 111, 130, 35, 34, 233, 380, 175, 14, 55, 474, 1022, 700, 126, 89, 942, 2590, 2450, 756, 42, 144, 1836, 6260, 7770, 3570, 462, 233, 3522, 14570, 22890, 14490, 3234, 132, 377, 6666, 32870, 63600, 52668
OFFSET
0,3
COMMENTS
Row n has 1+floor(n/2) terms. T(n,0) = A000045(n+1) (the Fibonacci numbers). T(2n,n) = binomial(2n,n)/(n+1) = A000108(n) (the Catalan numbers). Row sums yield A118720. Column k has g.f. = c(k)z^(2k)/(1-z-z^2)^(2k+1), where c(k) = binomial(2k,k)/(k+1) are the Catalan numbers; accordingly, T(n,1) = A001628(n-2), T(n,2) = 2*A001873(n-4), T(n,3) = 5*A001875(n-6). Sum_{k>=0} k*T(n,k) = A106050(n+1).
FORMULA
G.f.: G = G(t,z) satisfies G = 1 + zG + z^2*G + tz^2*G^2 (see explicit expression at the Maple program).
EXAMPLE
Triangle starts:
1;
1;
2, 1;
3, 3;
5, 9, 2;
8, 22, 10;
13, 51, 40, 5;
T(3,1)=3 because we have hUD, UhD and UDh.
MAPLE
G:=((1-z-z^2-sqrt(1-2*z-z^2+2*z^3+z^4-4*t*z^2))*1/2)/(t*z^2): Gser:=simplify(series(G, z = 0, 17)): for n from 0 to 13 do P[n]:=sort(coeff(Gser, z, n)) end do: for n from 0 to 13 do seq(coeff(P[n], t, j), j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 03 2007
STATUS
approved