OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for the first 100 rows, flattened
FORMULA
G.f.: 1/sqrt((1+z-t*z^2)*(1-3*z-t*z^2)).
T(n,k) = C(n-k,k)*hypergeom([k-n/2,k-n/2+1/2], [1], 4). - Peter Luschny, Sep 18 2014
EXAMPLE
T(4,1)=9 because we have hhH, hHh, Hhh, HUD, UDH, UHD, HDU, DUH and DHU.
Triangle starts:
1;
1;
3, 1;
7, 2;
19, 9, 1;
51, 28, 3;
141, 95, 18, 1;
393, 306, 70, 4;
1107, 987, 285, 30, 1;
3139, 3144, 1071, 140, 5;
MAPLE
G:=1/sqrt((1+z-t*z^2)*(1-3*z-t*z^2)): Gser:=simplify(series(G, z=0, 18)): for n from 0 to 13 do P[n]:=sort(coeff(Gser, z, n)) end do: for n from 0 to 13 do seq(coeff(P[n], t, j), j=0..floor((1/2)*n)) end do; # yields sequence in triangular form
A132885 := (n, k) -> binomial(n-k, k)*hypergeom([k-n/2, k-n/2+1/2], [1], 4): seq(print(seq(round(evalf(A132885(n, k))), k=0..iquo(n, 2))), n=0..9); # Peter Luschny, Sep 18 2014
MATHEMATICA
T[n_, k_] := Binomial[n - k, k]*Hypergeometric2F1[k - n/2, k - n/2 + 1/2, 1, 4]; Table[T[n, k], {n, 0, 10}, {k, 0, Floor[n/2]}] // Flatten (* G. C. Greubel, Mar 01 2017 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 03 2007
STATUS
approved