login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132436
A binomial recursion: a(n) = p(n) (see comment).
1
1, 1, 4, 20, 129, 1020, 9542, 103063, 1262134, 17279744, 261531315, 4335950346, 78146040374, 1521220672933, 31808447321848, 711019048106744, 16919695824732249, 427046133330613512, 11394750238551713066, 320486422239301377007, 9476411014096567341034
OFFSET
1,3
COMMENTS
Let z(1) = x and z(n) = 1 + Sum_{k=1..n-1} (-1 + binomial(n,k))*z(k), then z(n) = p(n)*x + q(n).
LINKS
FORMULA
Limit_{n->oo} p(n)/q(n) = (Pi-2)/(4-Pi) = 1.329896183162743847239353...
From Vaclav Kotesovec, Nov 25 2020: (Start)
a(n) ~ (Pi - 2) * n! / (2*sqrt(Pi*n) * log(2)^(n + 1/2)).
a(n) ~ (Pi - 2) * n^n / (sqrt(2) * exp(n) * log(2)^(n + 1/2)).
E.g.f.: 1 + x + exp(x/2)*(2*arcsin(exp(x/2)/sqrt(2)) - 1 - Pi/2) / sqrt(2 - exp(x)).
(End)
MATHEMATICA
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(-1 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[Simplify[CoefficientList[Series[1 + x + E^(x/2)*(2*ArcSin[E^(x/2)/Sqrt[2]] - 1 - Pi/2)/Sqrt[2 - E^x], {x, 0, nmax}], x] * Range[0, nmax]!]] (* Vaclav Kotesovec, Nov 25 2020 *)
PROG
(PARI) r=1; s=-1; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 20 2007
STATUS
approved