login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A196557
O.g.f.: Sum_{n>=0} 4*(n+4)^(n-1) * x^n / Product_{k=1..n} (1+k*x).
4
1, 4, 20, 128, 1036, 10308, 122560, 1701092, 27053556, 485683128, 9723771156, 214934627476, 5201286731560, 136818097071820, 3888121468512308, 118737900886653664, 3878569457507036988, 134960059001226137588, 4984357865462772982112
OFFSET
0,2
LINKS
FORMULA
E.g.f.: exp(-4*LambertW(exp(-x)-1)).
a(n) = Sum_{k=0..n} (-1)^(n-k)*Stirling2(n, k)*4*(k+4)^(k-1).
E.g.f.: A(x) = G(x)^4 where G(x) = e.g.f. of A058864, which is the number of labeled chordal graphs (connected or not) on n nodes with no induced path P_4.
a(n) ~ 4*sqrt(exp(1)-1)*n^(n-1)/(exp(n-4)*(1-log(exp(1)-1))^(n-1/2)). - Vaclav Kotesovec, Jul 09 2013
EXAMPLE
O.g.f.: A(x) = 1 + 4*x + 20*x^2 + 128*x^3 + 1036*x^4 + 10308*x^5 +...
where the o.g.f. is given by:
A(x) = 1 + 4*5^0*x/(1+x) + 4*6^1*x^2/((1+x)*(1+2*x)) + 4*7^2*x^3/((1+x)*(1+2*x)*(1+3*x)) + 4*8^3*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +...
E.g.f.: A(x) = 1 + 4*x + 20*x^2/2! + 128*x^3/3! + 1036*x^4/4! + 10308*x^5/5! +...
where the e.g.f. is given by:
A(x)^(1/2) = 1 + 2*x + 6*x^2/2! + 28*x^3/3! + 186*x^4/4! + 1614*x^5/5! + 17332*x^6/6! +...+ A196555(n)*x^n/n! +...
A(x)^(1/4) = 1 + x + 2*x^2/2! + 8*x^3/3! + 49*x^4/4! + 402*x^5/5! + 4144*x^6/6! +...+ A058864(n)*x^n/n! +...
MATHEMATICA
CoefficientList[Series[E^(-4*LambertW[E^(-x)-1]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jul 09 2013 *)
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, 4*(m+4)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
(PARI) /* E.g.f. = G(x)^4 where G(x) = e.g.f. of A058864 */
{A058864(n)=polcoeff(sum(m=0, n, (m+1)^(m-1)*x^m/prod(k=1, m, 1+k*x+x*O(x^n))), n)}
{a(n)=n!*polcoeff(sum(k=0, n, A058864(k)*x^k/k!+x*O(x^n))^4, n)}
(PARI) a(n)=sum(k=0, n, (-1)^(n-k)*stirling(n, k, 2)*4*(k+4)^(k-1));
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-4*lambertw(exp(-x)-1)))) \\ Seiichi Manyama, Nov 21 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2011
STATUS
approved