login
A082032
Expansion of e.g.f.: exp(2*x)/(1-2*x).
5
1, 4, 20, 128, 1040, 10432, 125248, 1753600, 28057856, 505041920, 10100839424, 222218469376, 5333243269120, 138664325005312, 3882601100165120, 116478033004986368, 3727297056159629312, 126728099909427527680, 4562211596739391258624, 173364040676096868352000, 6934561627043874735128576
OFFSET
0,2
COMMENTS
Binomial transform of A010844. a(n) = b such that Integral_{x=0..1} (2*x)^n*exp(-x) dx = c - b*exp(-1). - Francesco Daddi, Jul 31 2011
LINKS
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms and the Hankel Transform, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.1.
FORMULA
E.g.f.: exp(2*x)/(1-2*x)
a(n) = 2^n*A000522(n). - Vladeta Jovovic, Oct 29 2003
a(n) = 2n*a(n)+2^n, n>0, a(0)=1. - Paul Barry, Aug 26 2004
a(n) +2*(-n-1)*a(n-1) +4*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 26 2012
G.f.: 1/Q(0), where Q(k)= 1 - 2*x - 2*x*(k+1)/(1-2*x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 19 2013
G.f.: 1/Q(0), where Q(k) = 1 - 4*x*(k+1) - 4*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 30 2013
a(n) = 2^n*hypergeometric_U(1,n+2,1). - Peter Luschny, Nov 26 2014
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[2x]/(1-2x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Aug 02 2021 *)
PROG
(PARI) my(x='x + O('x^25)); Vec(serlaplace(exp(2*x)/(1-2*x))) \\ Michel Marcus, Jan 27 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Apr 02 2003
EXTENSIONS
More terms from Michel Marcus, Jan 27 2019
STATUS
approved