OFFSET
1,2
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..400
FORMULA
Let z(1) = x and z(n) = 1 + Sum_{k=1,..,n-1} ( (2 + binomial(n,k))*z(k)) ), then z(n) = p(n)*x + q(n).
Lim n-->oo p(n)/q(n) = (3 - 2*log(2))/(2*log(2) - 1) = 4.17739889912417966161076...
a(n) ~ (3 - 2*log(2)) * n * n! / (8 * log(2)^(n+2)). - Vaclav Kotesovec, Nov 25 2020
E.g.f.: (1 - exp(x)) * (2*x - 1 - exp(x)) / (2*(2 - exp(x))^2). - Vaclav Kotesovec, Nov 25 2020
MATHEMATICA
z[1]:= x; z[n_] := 1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n - 1}]; Table[ Coefficient[z[n], x], {n, 1, 20}] (* G. C. Greubel, Sep 28 2016 *)
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[CoefficientList[Series[(1 - E^x)*(-1 - E^x + 2*x)/(2*(2 - E^x)^2), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 25 2020 *)
PROG
(PARI) r=1; s=2; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 20 2007
EXTENSIONS
More terms from Amiram Eldar, Nov 25 2020
STATUS
approved