login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135147
A binomial recursion : a(n) = p(n) (see formula).
6
1, 4, 25, 188, 1671, 17190, 201125, 2638984, 38390179, 613363466, 10678267425, 201215691660, 4080450217247, 88609322165902, 2051573162708125, 50450534991347216, 1313219083705400475, 36072797094375866898, 1042811362801447763225, 31647646914322017237652, 1006032342980535954429463
OFFSET
1,2
LINKS
FORMULA
Let z(1) = x and z(n) = 1 + Sum_{k=1,..,n-1} ( (2 + binomial(n,k))*z(k)) ), then z(n) = p(n)*x + q(n).
Lim n-->oo p(n)/q(n) = (3 - 2*log(2))/(2*log(2) - 1) = 4.17739889912417966161076...
a(n) ~ (3 - 2*log(2)) * n * n! / (8 * log(2)^(n+2)). - Vaclav Kotesovec, Nov 25 2020
E.g.f.: (1 - exp(x)) * (2*x - 1 - exp(x)) / (2*(2 - exp(x))^2). - Vaclav Kotesovec, Nov 25 2020
MATHEMATICA
z[1]:= x; z[n_] := 1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n - 1}]; Table[ Coefficient[z[n], x], {n, 1, 20}] (* G. C. Greubel, Sep 28 2016 *)
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[CoefficientList[Series[(1 - E^x)*(-1 - E^x + 2*x)/(2*(2 - E^x)^2), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 25 2020 *)
PROG
(PARI) r=1; s=2; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Nov 20 2007
EXTENSIONS
More terms from Amiram Eldar, Nov 25 2020
STATUS
approved