|
|
A132124
|
|
a(n) = n*(n+1)*(8*n + 1)/6.
|
|
8
|
|
|
0, 3, 17, 50, 110, 205, 343, 532, 780, 1095, 1485, 1958, 2522, 3185, 3955, 4840, 5848, 6987, 8265, 9690, 11270, 13013, 14927, 17020, 19300, 21775, 24453, 27342, 30450, 33785, 37355, 41168, 45232, 49555, 54145, 59010, 64158, 69597, 75335, 81380
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
a(n) = A132121(n,2) for n > 1.
Convolution of the sequences (0,3,5,0,0,0,...) and (binomial(n+3, 3)), n >= 0. - Emeric Deutsch, Aug 30 2007
|
|
LINKS
|
Table of n, a(n) for n=0..39.
|
|
FORMULA
|
G.f.: x*(3+5*x)/(1-x)^4. - Emeric Deutsch, Aug 30 2007
From Bruno Berselli, Nov 25 2010: (Start)
a(n) = n*A014105(n) - A016061(n-1), since A016061(n-1) = Sum_{k=0..n-1} A014105(k) (n > 0).
Also a(n) = A002412(n) + A006331(n) = A007585(n) + A002378(n). (End)
|
|
MAPLE
|
seq((1/6)*n*(n+1)*(8*n+1), n=0..40); # Emeric Deutsch, Aug 30 2007
|
|
CROSSREFS
|
Cf. A000330, A033994, A132112, A050409.
Cf. A014105, A016061; A002412, A006331; A007585, A002378.
Sequence in context: A084069 A297514 A307862 * A011917 A018691 A332869
Adjacent sequences: A132121 A132122 A132123 * A132125 A132126 A132127
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Reinhard Zumkeller, Aug 12 2007
|
|
STATUS
|
approved
|
|
|
|