login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332869
Number of fixed-point free involutions in a fixed Sylow 2-subgroup of the symmetric group of degree 4n.
2
1, 3, 17, 51, 417, 1251, 7089, 21267, 206657, 619971, 3513169, 10539507, 86175969, 258527907, 1464991473, 4394974419, 44854599297, 134563797891, 762528188049, 2287584564147, 18704367906849, 56113103720547, 317974254416433, 953922763249299, 9269516926920129
OFFSET
0,2
COMMENTS
Bisection of A332840.
LINKS
FORMULA
a(n) = A332840(2*n).
a(n) = Product(A332758(k+2)) where k ranges over the positions of 1 bits in the binary expansion of n.
a(n) = big-Theta(C^n) for C = 4.63233857..., i.e., A*C^n < a(n) < B*C^n for constants A, B (but it's not the case that a(n) ~ C^n as lim inf a(n)/C^n and lim sup a(n)/C^n differ).
EXAMPLE
For n=1, the a(1)=3 fixed-point free involutions in a fixed Sylow 2-subgroup of S_4 (which subgroup is isomorphic to the dihedral group of degree 4) are (12)(34), (13)(24), and (14)(23).
MAPLE
b:= proc(n) b(n):=`if`(n=0, 0, b(n-1)^2+2^(2^(n-1)-1)) end:
a:= n-> (l-> mul(`if`(l[i]=1, b(i+1), 1), i=1..nops(l)))(Bits[Split](n)):
seq(a(n), n=0..32); # Alois P. Heinz, Feb 27 2020
MATHEMATICA
A332758[n_] := A332758[n] = If[n==0, 0, A332758[n-1]^2 + 2^(2^(n-1)-1)];
a[n_] := Product[A332758[k+1], {k, Flatten@ Position[ Reverse@ IntegerDigits[n, 2], 1]}];
a /@ Range[0, 24] (* Jean-François Alcover, Apr 10 2020 *)
PROG
(PARI) a(n)={my(v=vector(logint(max(1, n), 2)+2)); v[1]=1; for(n=2, #v, v[n]=v[n-1]^2 + 2^(2^(n-1)-1)); prod(k=2, #v, if(bittest(n, k-2), v[k], 1))} \\ Andrew Howroyd, Feb 27 2020
CROSSREFS
Sequence in context: A132124 A011917 A018691 * A225727 A163943 A093418
KEYWORD
nonn
AUTHOR
Nick Krempel, Feb 27 2020
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Feb 27 2020
STATUS
approved