|
|
A297514
|
|
Number of n X 3 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 or 3 neighboring 1s.
|
|
1
|
|
|
3, 17, 49, 177, 727, 2445, 8931, 33841, 120079, 438161, 1618767, 5849585, 21333063, 78146401, 284124279, 1036090465, 3784306647, 13787045553, 50277043559, 183451730433, 668806025271, 2438991559953, 8896352148007, 32440479868961
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = a(n-1) + 2*a(n-2) + 30*a(n-3) + 6*a(n-5) - 124*a(n-6) - 8*a(n-8) + 64*a(n-9).
Empirical g.f.: x*(3 + 14*x + 26*x^2 + 4*x^3 - 58*x^4 - 124*x^5 - 8*x^6 + 24*x^7 + 64*x^8) / (1 - x - 2*x^2 - 30*x^3 - 6*x^5 + 124*x^6 + 8*x^8 - 64*x^9). - Colin Barker, Feb 28 2019
|
|
EXAMPLE
|
Some solutions for n=7:
..0..0..1. .1..0..1. .1..0..0. .1..0..0. .1..1..0. .0..0..0. .1..0..0
..0..1..0. .1..1..0. .0..1..0. .1..1..0. .1..0..1. .0..0..0. .0..1..1
..0..0..0. .0..0..0. .1..0..1. .0..0..1. .1..0..0. .0..0..0. .0..0..1
..0..1..1. .1..1..1. .0..0..0. .0..0..0. .0..1..1. .0..1..1. .1..0..1
..0..0..0. .1..0..0. .0..1..0. .1..1..0. .0..0..1. .0..0..0. .1..1..0
..0..0..1. .1..0..0. .1..0..0. .0..0..0. .1..0..0. .1..1..0. .0..0..0
..1..1..1. .0..1..0. .0..0..0. .0..0..0. .0..1..0. .1..0..1. .0..0..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|