login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130777 Coefficients of first difference of Chebyshev S polynomials. 15
1, -1, 1, -1, -1, 1, 1, -2, -1, 1, 1, 2, -3, -1, 1, -1, 3, 3, -4, -1, 1, -1, -3, 6, 4, -5, -1, 1, 1, -4, -6, 10, 5, -6, -1, 1, 1, 4, -10, -10, 15, 6, -7, -1, 1, -1, 5, 10, -20, -15, 21, 7, -8, -1, 1, -1, -5, 15, 20, -35, -21, 28, 8, -9, -1, 1, 1, -6, -15, 35, 35, -56, -28, 36, 9, -10, -1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Inverse of triangle in A061554.
Signed version of A046854.
From Paul Barry, May 21 2009: (Start)
Riordan array ((1-x)/(1+x^2),x/(1+x^2)).
This triangle is the coefficient triangle for the Hankel transforms of the family of generalized Catalan numbers that satisfy a(n;r)=r*a(n-1;r)+sum{k=1..n-2, a(k)*a(n-1-k;r)}, a(0;r)=a(1;r)=1. The Hankel transform of a(n;r) is h(n)=sum{k=0..n, T(n,k)*r^k} with g.f. (1-x)/(1-r*x+x^2). These sequences include A086246, A000108, A002212. (End)
From Wolfdieter Lang, Jun 11 2011: (Start)
The Riordan array ((1+x)/(1+x^2),x/(1+x^2)) with entries Phat(n,k)= ((-1)^(n-k))*T(n,k) and o.g.f. Phat(x,z)=(1+z)/(1-x*z+z^2) for the row polynomials Phat(n,x) is related to Chebyshev C and S polynomials as follows.
Phat(n,x) = (R(n+1,x)-R(n,x))/(x+2) = S(2*n,sqrt(2+x))
with R(n,x)=C_n(x) in the Abramowitz and Stegun notation, p. 778, 22.5.11. See A049310 for the S polynomials. Proof from the o.g.f.s.
Recurrence for the row polynomials Phat(n,x):
Phat(n,x) = x*Phat(n-1,x) - Phat(n-2,x) for n>=1; Phat(-1,x)=-1, Phat(0,x)=1.
The A-sequence for this Riordan array Phat (see the W. Lang link under A006232 for A- and Z-sequences for Riordan matrices) is given by 1, 0, -1, 0, -1, 0, -2, 0, -5,.., starting with 1 and interlacing the negated A000108 with zeros (o.g.f. 1/c(x^2) = 1-c(x^2)*x^2, with the o.g.f. c(x) of A000108).
The Z-sequence has o.g.f. sqrt((1-2*x)/(1+2*x)), and it is given by A063886(n)*(-1)^n.
The A-sequence of the Riordan array T(n,k) is identical with the one for the Riordan array Phat, and the Z-sequence is -A063886(n).
(End)
The row polynomials P(n,x) are the characteristic polynomials of the adjacency matrices of the graphs which look like P_n (n vertices (nodes), n-1 lines (edges)), but vertex no. 1 has a loop. - Wolfdieter Lang, Nov 17 2011
From Wolfdieter Lang, Dec 14 2013: (Start)
The zeros of P(n,x) are x(n,j) = -2*cos(2*Pi*j/(2*n+1)), j=1..n. From P(n,x) = (-1)^n*S(2*n,sqrt(2-x)) (see, e.g., the Lemma 6 of the W. Lang link).
The discriminants of the P-polynomials are given in A052750. (End)
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available).
LINKS
Hyeong-Kwan Ju, On the sequence generated by a certain type of matrices, Honam Math. J. 39, No. 4, 665-675 (2017), Theorem 2.16.
Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv:1210.1018 [math.GR], 2012-2017; see Definition 1, Lemma 6 and Remark 4.
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), p. 22-31 (formula 5).
FORMULA
Number triangle T(n,k) = (-1)^C(n-k+1,2)*C(floor((n+k)/2),k). - Paul Barry, May 21 2009
From Wolfdieter Lang, Jun 11 2011: (Start)
Row polynomials: P(n,x) = sum(k=0..n, T(n,k)*x^k) = R(2*n+1,sqrt(2+x)) / sqrt(2+x), with Chebyshev polynomials R with coefficients given in A127672 (scaled T-polynomials).
R(n,x) is called C_n(x) in Abramowitz and Stegun's handbook, p. 778, 22.5.11.
P(n,x) = S(n,x)-S(n-1,x), n>=0, S(-1,x)=0, with the Chebyshev S-polynomials (see the coefficient triangle A049310).
O.g.f. for row polynomials: P(x,z):= sum(n>=0, P(n,x)*z^n ) = (1-z)/(1-x*z+z^2).
(from the o.g.f. for R(2*n+1,x), n>=0, computed from the o.g.f. for the R-polynomials (2-x*z)/(1-x*z+z^2) (see A127672))
Proof of the Chebyshev connection from the o.g.f. for Riordan array property of this triangle (see the P. Barry comment above).
For the A- and Z-sequences of this Riordan array see a comment above. (End)
abs(T(n,k)) = A046854(n,k) = abs(A066170(n,k)) T(n,n-k) = A108299(n,k); abs(T(n,n-k)) = A065941(n,k). - Johannes W. Meijer, Aug 08 2011
From Wolfdieter Lang, Jul 31 2014: (Start)
Similar to the triangles A157751, A244419 and A180070 one can give for the row polynomials P(n,x) besides the usual three term recurrence another one needing only one recurrence step. This uses also a negative argument, namely P(n,x) = (-1)^(n-1)*(-1 + x/2)*P(n-1,-x) + (x/2)*P(n-1,x), n >= 1, P(0,x) = 1. Proof by computing the o.g.f. and comparing with the known one. This entails the alternative triangle recurrence T(n,k) = (-1)^(n-k)*T(n-1,k) + (1/2)*(1 + (-1)^(n-k))*T(n-1,k-1), n >= m >= 1, T(n,k) = 0 if n < k and T(n,0) = (-1)^floor((n+1)/2) = A057077(n+1). [P(n,x) recurrence corrected Aug 03 2014]
(End)
EXAMPLE
The triangle T(n,k) begins:
n\k 0 1 1 3 4 5 6 7 8 9 10 11 12 13 14 15 ...
0: 1
1: -1 1
2: -1 -1 1
3: 1 -2 -1 1
4: 1 2 -3 -1 1
5: -1 3 3 -4 -1 1
6: -1 -3 6 4 -5 -1 1
7: 1 -4 -6 10 5 -6 -1 1
8: 1 4 -10 -10 15 6 -7 -1 1
9: -1 5 10 -20 -15 21 7 -8 -1 1
10: -1 -5 15 20 -35 -21 28 8 -9 -1 1
11: 1 -6 -15 35 35 -56 -28 36 9 -10 -1 1
12: 1 6 -21 -35 70 56 -84 -36 45 10 -11 -1 1
13: -1 7 21 -56 -70 126 84 -120 -45 55 11 -12 -1 1
14: -1 -7 28 56 -126 -126 210 120 -165 -55 66 12 -13 -1 1
15: 1 -8 -28 84 126 -252 -210 330 165 -220 -66 78 13 -14 -1 1
... reformatted and extended - Wolfdieter Lang, Jul 31 2014.
---------------------------------------------------------------------------
From Paul Barry, May 21 2009: (Start)
Production matrix is
-1, 1,
-2, 0, 1,
-2, -1, 0, 1,
-4, 0, -1, 0, 1,
-6, -1, 0, -1, 0, 1,
-12, 0, -1, 0, -1, 0, 1,
-20, -2, 0, -1, 0, -1, 0, 1,
-40, 0, -2, 0, -1, 0, -1, 0, 1,
-70, -5, 0, -2, 0, -1, 0, -1, 0, 1 (End)
Row polynomials as first difference of S polynomials:
P(3,x) = S(3,x) - S(2,x) = (x^3 - 2*x) - (x^2 -1) = 1 - 2*x - x^2 +x^3.
Alternative triangle recurrence (see a comment above): T(6,2) = T(5,2) + T(5,1) = 3 + 3 = 6. T(6,3) = -T(5,3) + 0*T(5,1) = -(-4) = 4. - Wolfdieter Lang, Jul 31 2014
MAPLE
A130777 := proc(n, k): (-1)^binomial(n-k+1, 2)*binomial(floor((n+k)/2), k) end: seq(seq(A130777(n, k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
MATHEMATICA
T[n_, k_] := (-1)^Binomial[n - k + 1, 2]*Binomial[Floor[(n + k)/2], k];
Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2017, from Maple *)
PROG
(Sage)
@CachedFunction
def A130777(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
h = A130777(n-1, k) if n==1 else 0
return A130777(n-1, k-1) - A130777(n-2, k) - h
for n in (0..9): [A130777(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
CROSSREFS
Cf. A066170, A046854, A057077 (first column).
Row sums: A010892(n+1); repeat(1,0,-1,-1,0,1). Alternating row sums: A061347(n+2); repeat(1,-2,1).
Sequence in context: A225631 A306209 A267482 * A187660 A066170 A046854
KEYWORD
sign,tabl,easy
AUTHOR
Philippe Deléham, Jul 14 2007
EXTENSIONS
New name and Chebyshev comments by Wolfdieter Lang, Jun 11 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 00:30 EDT 2024. Contains 371917 sequences. (Running on oeis4.)