login
A129284
a(n) = A129150(n) / 4, where A129150(n) = n-th arithmetic derivative of 2^3.
5
2, 3, 4, 8, 20, 44, 92, 188, 380, 856, 2148, 5024, 17616, 58768, 176320, 755904, 3305920, 13885184, 69634816, 348174336, 2385273856, 14652403712, 102566830080, 849285738496, 6035962949632, 44017806979072, 308166534991872, 2380768960708608, 23410894780694528
OFFSET
0,1
COMMENTS
In general, the trajectory of p^(p+1) under A003415 has a common factor p^p, and divided by p^p it gives the trajectory of p under A129283: n -> n + n'. Here we have the case p = 2, see A129151 and A129152 for p = 3 and 5. - M. F. Hasler, Nov 28 2019
LINKS
FORMULA
a(n+1) = A129283(a(n)), a(0) = 2.
PROG
(Haskell) a129284 n = a129150 n `div` 4 -- Reinhard Zumkeller, Nov 01 2013, corrected by M. F. Hasler, Nov 29 2019
(PARI) A129284_upto(n)=A129150_upto(n)\4 \\ M. F. Hasler, Nov 29 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Apr 07 2007
EXTENSIONS
a(18)-a(28) from Paolo P. Lava, Apr 16 2012
Edited by M. F. Hasler, Nov 27 2019
STATUS
approved