login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A129150(n) / 4, where A129150(n) = n-th arithmetic derivative of 2^3.
5

%I #25 Feb 26 2024 01:59:14

%S 2,3,4,8,20,44,92,188,380,856,2148,5024,17616,58768,176320,755904,

%T 3305920,13885184,69634816,348174336,2385273856,14652403712,

%U 102566830080,849285738496,6035962949632,44017806979072,308166534991872,2380768960708608,23410894780694528

%N a(n) = A129150(n) / 4, where A129150(n) = n-th arithmetic derivative of 2^3.

%C In general, the trajectory of p^(p+1) under A003415 has a common factor p^p, and divided by p^p it gives the trajectory of p under A129283: n -> n + n'. Here we have the case p = 2, see A129151 and A129152 for p = 3 and 5. - _M. F. Hasler_, Nov 28 2019

%H Paolo P. Lava, <a href="/A129284/b129284.txt">Table of n, a(n) for n = 0..75</a>

%F a(n+1) = A129283(a(n)), a(0) = 2.

%o (Haskell) a129284 n = a129150 n `div` 4 -- _Reinhard Zumkeller_, Nov 01 2013, corrected by _M. F. Hasler_, Nov 29 2019

%o (PARI) A129284_upto(n)=A129150_upto(n)\4 \\ _M. F. Hasler_, Nov 29 2019

%Y Cf. A129285, A129286, A051674.

%K nonn

%O 0,1

%A _Reinhard Zumkeller_, Apr 07 2007

%E a(18)-a(28) from _Paolo P. Lava_, Apr 16 2012

%E Edited by _M. F. Hasler_, Nov 27 2019