The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A339630 a(n) is the first number k such that there are exactly n ways to write 6*k = p + q with p a lesser twin prime (A001359) and q a greater twin prime (A006512), or 0 if there is no such k. 2
 1, 2, 3, 4, 8, 20, 19, 80, 40, 90, 48, 270, 35, 50, 117, 140, 110, 644, 215, 714, 222, 430, 345, 350, 315, 850, 390, 930, 620, 1110, 602, 1040, 385, 2290, 590, 780, 798, 910, 735, 990, 1020, 1700, 700, 770, 595, 1760, 950, 3380, 875, 5660, 1330, 1120, 975, 5970, 1085, 2990, 1400, 3980, 1815, 4570 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If n is odd, a(n)/2 (if nonzero) is in A002822. LINKS Robert Israel, Table of n, a(n) for n = 0..1330 FORMULA A339625(a(n)) = n if a(n) > 0. EXAMPLE a(4) = 8 because 6*8 = 48 can be written as p+q in exactly 4 ways: 48 = 5 + 43 = 17 + 31 = 29 + 19 = 41 + 7, and no smaller number has this property. MAPLE # given list A339625 T:= Array(0..max(A339625)): for n from 1 to nops(A339625) do   if T[A339625[n]] = 0 then T[A339625[n]]:= n fi od: for k from 1 while T[k] <> 0 do od: seq(T[i], i=0..k-1); CROSSREFS Cf. A001359, A002822, A006512, A339625. Sequence in context: A215897 A276673 A282815 * A105055 A108506 A129284 Adjacent sequences:  A339627 A339628 A339629 * A339631 A339632 A339633 KEYWORD nonn AUTHOR J. M. Bergot and Robert Israel, Dec 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 15:33 EDT 2021. Contains 343825 sequences. (Running on oeis4.)