login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339631
Number of 3 X n matrices with 3*n/2 1's (if n is even) or (3*n+1)/2 1's (if n is odd) that do not have a horizontal nor vertical nor diagonal 3-streak of 1's.
2
1, 3, 18, 16, 28, 30, 58, 72, 140, 178, 334, 444, 824, 1114, 2038, 2808, 5084, 7098, 12730, 17984, 32004, 45656, 80694, 116106, 204004, 295718, 516902, 754226, 1312336, 1926060, 3337682, 4924188, 8502132, 12602416, 21688182, 32284214, 55395140, 82777240, 141651742, 212415744
OFFSET
0,2
COMMENTS
Provided by D. Zeilberger's Maple package (ComboProject5.txt) for Combinatorics Fall 2020 at Rutgers University (see links). Generated using alternating procedures EvenTTT3() and OddTTT3() from this Maple package.
REFERENCES
Doron Zeilberger, Math 454, Section 02 (Combinatorics) Fall 2020 (Rutgers University).
FORMULA
a(n) = [x^n*t^ceiling(3*n/2)] (4*t^17*x^11 + 4*t^16*x^11 + 8*t^16*x^10 + 12*t^15*x^10 + 6*t^15*x^9 + 8*t^14*x^10 + 8*t^14*x^9 + 8*t^13*x^9 - 2*t^13*x^8 + 6*t^12*x^9 - 16*t^12*x^8 - 2*t^11*x^8 - 26*t^11*x^7 - 26*t^10*x^7 - 19*t^10*x^6 - 38*t^9*x^6 - 7*t^9*x^5 - 19*t^8*x^6 - 13*t^8*x^5 - 13*t^7*x^5 - t^7*x^4 - 7*t^6*x^5 + 10*t^6*x^4 - t^5*x^4 + 16*t^5*x^3 + 16*t^4*x^3 + 9*t^4*x^2 + 18*t^3*x^2 + 9*t^2*x^2) / (t^12*x^8 + t^11*x^7 + t^10*x^7 + t^9*x^6 - 2*t^6*x^4 - t^5*x^3 - t^4*x^3 - t^3*x^2 + 1) for n >= 2.
EXAMPLE
For n = 1 it is a 3 X 1 matrix, and there is no way to have a 3-streak of 1's or 0's since there must be 2 1's and 1 0, so there are three matrices [110],[011],[101].
For n = 3 it is the classic Tic-Tac-Toe board, with 1's being X's and 0's being O's.
PROG
(Julia)
using Nemo
function A339631List(prec)
R, t = PolynomialRing(ZZ, "t")
S, x = PowerSeriesRing(R, prec+1, "x")
num = (4*t^17*x^11 + 4*t^16*x^11 + 8*t^16*x^10 + 12*t^15*x^10 + 6*t^15*x^9 + 8*t^14*x^10 + 8*t^14*x^9 + 8*t^13*x^9 - 2*t^13*x^8 + 6*t^12*x^9 - 16*t^12*x^8 - 2*t^11*x^8 - 26*t^11*x^7 - 26*t^10*x^7 - 19*t^10*x^6 - 38*t^9*x^6 - 7*t^9*x^5 - 19*t^8*x^6 - 13*t^8*x^5 - 13*t^7*x^5 - t^7*x^4 - 7*t^6*x^5 + 10*t^6*x^4 - t^5*x^4 + 16*t^5*x^3 + 16*t^4*x^3 + 9*t^4*x^2 + 18*t^3*x^2 + 9*t^2*x^2)
den = (t^12*x^8 + t^11*x^7 + t^10*x^7 + t^9*x^6 - 2*t^6*x^4 - t^5*x^3 - t^4*x^3 - t^3*x^2 + 1)
ser = divexact(num, den)
C = [coeff(coeff(ser, n), div(3*n, 2)) for n in 0:prec]
C[1] = 1; C[2] = 3
return C
end
A339631List(39) |> println # Peter Luschny, Dec 19 2020
CROSSREFS
Bisections give: A339633 (even part), A339634 (odd part).
Sequence in context: A073815 A212994 A307640 * A195998 A291167 A361592
KEYWORD
nonn
AUTHOR
Doron Zeilberger, Taerim Kim, Karnaa Mistry, Weiji Zheng, Dec 10 2020
STATUS
approved