login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127724
k-imperfect numbers for some k >= 1.
14
1, 2, 6, 12, 40, 120, 126, 252, 880, 2520, 2640, 10880, 30240, 32640, 37800, 37926, 55440, 75852, 685440, 758520, 831600, 2600640, 5533920, 6917400, 9102240, 10281600, 11377800, 16687440, 152182800, 206317440, 250311600, 475917120, 715816960, 866829600
OFFSET
1,2
COMMENTS
For prime powers p^e, define a multiplicative function rho(p^e) = p^e - p^(e-1) + p^(e-2) - ... + (-1)^e. A number n is called k-imperfect if there is an integer k such that n = k*rho(n). Sequence A061020 gives a signed version of the rho function. As with multiperfect numbers (A007691), 2-imperfect numbers are also called imperfect numbers. As shown by Iannucci, when rho(n) is prime, there is sometimes a technique for generating larger imperfect numbers.
Zhou and Zhu find 5 more terms, which are in the b-file. - T. D. Noe, Mar 31 2009
Does this sequence follow Benford's law? - David A. Corneth, Oct 30 2017
If a term t has a prime factor p from A065508 with exponent 1 and does not have the corresponding prime factor q from A074268, then t*p*q is also a term. - Michel Marcus, Nov 22 2017
For n >= 1, the least n-imperfect numbers are 1, 2, 6, 993803899780063855042560. - Michel Marcus, Feb 13 2018
For any m > 0, if n*p^(2m-1) is k-imperfect, q = rho(p^(2m)) is prime and gcd(pq,n) = 1, then n*p^(2m)*q is also k-imperfect. - M. F. Hasler, Feb 13 2020
REFERENCES
R. K. Guy, Unsolved Problems in Theory of Numbers, Springer, 1994, B1.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..50 (terms < 10^13, a(1)-a(39) from T. D. Noe (from Iannucci, Zhou, and Zhu), a(40)-a(44) from Donovan Johnson)
Douglas E. Iannucci, On a variation of perfect numbers, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6 (2006), #A41.
Donovan Johnson, 43 terms > 2*10^11
Andrew Lelechenko, 4-imperfect numbers, Apr 19 2014.
Michel Marcus, More 4-imperfect numbers, Nov 07 2017.
Allan Wechsler, Some progress in k-imperfect numbers (A127724), Seqfan, Feb 13 2020. Gives a first instance of a 5-imperfect number.
Weiyi Zhou and Long Zhu, On k-imperfect numbers, INTEGERS: Electronic Journal of Combinatorial Number Theory, 9 (2009), #A01.
EXAMPLE
126 = 2*3^2*7, rho(126) = (2-1)*(9-3+1)*(7-1) = 42. 3*42 = 126, so 126 is 3-imperfect. - Jud McCranie Sep 07 2019
MATHEMATICA
f[p_, e_]:=Sum[(-1)^(e-k) p^k, {k, 0, e}]; rho[n_]:=Times@@(f@@@FactorInteger[n]); Select[Range[10^6], Mod[ #, rho[ # ]]==0&]
PROG
(PARI) isok(n) = denominator(n/sumdiv(n, d, d*(-1)^bigomega(n/d))) == 1; \\ Michel Marcus, Oct 28 2017
(PARI) upto(ulim) = {res = List([1]); rhomap = Map(); forprime(p = 2, 3, for(i = 1, logint(ulim, p), mapput(rhomap, p^i, rho(p^i)); iterate(p^i, mapget(rhomap, p^i), ulim))); listsort(res, 1); res}
iterate(m, rhoo, ulim) = {my(c); if(m / rhoo == m \ rhoo, listput(res, m); my(frho = factor(rhoo)); for(i = 1, #frho~, if(m%frho[i, 1] != 0, for(e = 1, logint(ulim \ m, frho[i, 1]), if(mapisdefined(rhomap, frho[i, 1]^e) == 0, mapput(rhomap, frho[i, 1]^e, rho(frho[i, 1]^e))); iterate(m * frho[i, 1]^e, rhoo * mapget(rhomap, frho[i, 1]^e), ulim)); next(2))))}
rho(n) = {my(f = factor(n), res = q = 1); for(i=1, #f~, q = 1; for(j = 1, f[i, 2], q = -q + f[i, 1]^j); res * =q); res} \\ David A. Corneth, Nov 02 2017
(PARI) A127724_vec=concat(1, select( {is_A127724(n)=!(n%A206369(n))}, [1..10^5]*2))
/* It is known that the least odd term > 1 is > 10^49. This code defines an efficient function is_A127724, but A127724_vec is better computed with upto(.) */
A127724(n)=A127724_vec[n] \\ Used in other sequences. - M. F. Hasler, Feb 13 2020
CROSSREFS
Cf. A127725 (2-imperfect numbers), A127726 (3-imperfect numbers), A127727 (related primes), A309806 (the k values).
Cf. A061020 (signed version of rho function), A206369 (the rho function).
Sequence in context: A327879 A094261 A080497 * A178008 A377950 A266005
KEYWORD
nice,nonn
AUTHOR
T. D. Noe, Jan 25 2007
EXTENSIONS
Small correction in name from Michel Marcus, Feb 13 2018
STATUS
approved