Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #127 Jan 02 2023 12:30:46
%S 1,2,6,12,40,120,126,252,880,2520,2640,10880,30240,32640,37800,37926,
%T 55440,75852,685440,758520,831600,2600640,5533920,6917400,9102240,
%U 10281600,11377800,16687440,152182800,206317440,250311600,475917120,715816960,866829600
%N k-imperfect numbers for some k >= 1.
%C For prime powers p^e, define a multiplicative function rho(p^e) = p^e - p^(e-1) + p^(e-2) - ... + (-1)^e. A number n is called k-imperfect if there is an integer k such that n = k*rho(n). Sequence A061020 gives a signed version of the rho function. As with multiperfect numbers (A007691), 2-imperfect numbers are also called imperfect numbers. As shown by Iannucci, when rho(n) is prime, there is sometimes a technique for generating larger imperfect numbers.
%C Zhou and Zhu find 5 more terms, which are in the b-file. - _T. D. Noe_, Mar 31 2009
%C Does this sequence follow Benford's law? - _David A. Corneth_, Oct 30 2017
%C If a term t has a prime factor p from A065508 with exponent 1 and does not have the corresponding prime factor q from A074268, then t*p*q is also a term. - _Michel Marcus_, Nov 22 2017
%C For n >= 1, the least n-imperfect numbers are 1, 2, 6, 993803899780063855042560. - _Michel Marcus_, Feb 13 2018
%C For any m > 0, if n*p^(2m-1) is k-imperfect, q = rho(p^(2m)) is prime and gcd(pq,n) = 1, then n*p^(2m)*q is also k-imperfect. - _M. F. Hasler_, Feb 13 2020
%D R. K. Guy, Unsolved Problems in Theory of Numbers, Springer, 1994, B1.
%H Giovanni Resta, <a href="/A127724/b127724.txt">Table of n, a(n) for n = 1..50</a> (terms < 10^13, a(1)-a(39) from T. D. Noe (from Iannucci, Zhou, and Zhu), a(40)-a(44) from Donovan Johnson)
%H David A. Corneth, <a href="/A127724/a127724_2.gp.txt">Conjectured to be the terms up to 10^28</a>
%H Douglas E. Iannucci, <a href="http://www.integers-ejcnt.org/g41/g41.Abstract.html">On a variation of perfect numbers</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6 (2006), #A41.
%H Donovan Johnson, <a href="/A127724/a127724.txt">43 terms > 2*10^11</a>
%H Andrew Lelechenko, <a href="/A127724/a127724_1.txt">4-imperfect numbers</a>, Apr 19 2014.
%H Michel Marcus, <a href="/A127724/a127724_2.txt">More 4-imperfect numbers</a>, Nov 07 2017.
%H Michel Marcus, <a href="/A127724/a127724.log.txt">Least known integers with small denominator-fractional k's</a>, Feb 13 2018.
%H Allan Wechsler, <a href="http://list.seqfan.eu/oldermail/seqfan/2020-February/020471.html">Some progress in k-imperfect numbers (A127724)</a>, Seqfan, Feb 13 2020. Gives a first instance of a 5-imperfect number.
%H Weiyi Zhou and Long Zhu, <a href="http://www.emis.de/journals/INTEGERS/papers/j1/j1.Abstract.html">On k-imperfect numbers</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 9 (2009), #A01.
%e 126 = 2*3^2*7, rho(126) = (2-1)*(9-3+1)*(7-1) = 42. 3*42 = 126, so 126 is 3-imperfect. - _Jud McCranie_ Sep 07 2019
%t f[p_,e_]:=Sum[(-1)^(e-k) p^k, {k,0,e}]; rho[n_]:=Times@@(f@@@FactorInteger[n]); Select[Range[10^6], Mod[ #,rho[ # ]]==0&]
%o (PARI) isok(n) = denominator(n/sumdiv(n, d, d*(-1)^bigomega(n/d))) == 1; \\ _Michel Marcus_, Oct 28 2017
%o (PARI) upto(ulim) = {res = List([1]); rhomap = Map(); forprime(p = 2, 3, for(i = 1, logint(ulim, p), mapput(rhomap, p^i, rho(p^i)); iterate(p^i, mapget(rhomap, p^i), ulim))); listsort(res, 1); res}
%o iterate(m, rhoo, ulim) = {my(c); if(m / rhoo == m \ rhoo, listput(res, m); my(frho = factor(rhoo)); for(i = 1, #frho~, if(m%frho[i, 1] != 0, for(e = 1, logint(ulim \ m, frho[i, 1]), if(mapisdefined(rhomap, frho[i, 1]^e) == 0, mapput(rhomap, frho[i, 1]^e, rho(frho[i, 1]^e))); iterate(m * frho[i, 1]^e, rhoo * mapget(rhomap, frho[i, 1]^e), ulim)); next(2))))}
%o rho(n) = {my(f = factor(n), res = q = 1); for(i=1, #f~, q = 1; for(j = 1, f[i, 2], q = -q + f[i, 1]^j); res * =q); res} \\ _David A. Corneth_, Nov 02 2017
%o (PARI) A127724_vec=concat(1, select( {is_A127724(n)=!(n%A206369(n))}, [1..10^5]*2))
%o /* It is known that the least odd term > 1 is > 10^49. This code defines an efficient function is_A127724, but A127724_vec is better computed with upto(.) */
%o A127724(n)=A127724_vec[n] \\ Used in other sequences. - _M. F. Hasler_, Feb 13 2020
%Y Cf. A127725 (2-imperfect numbers), A127726 (3-imperfect numbers), A127727 (related primes), A309806 (the k values).
%Y Cf. A061020 (signed version of rho function), A206369 (the rho function).
%Y Cf. A065508, A074268.
%K nice,nonn
%O 1,2
%A _T. D. Noe_, Jan 25 2007
%E Small correction in name from _Michel Marcus_, Feb 13 2018