|
|
A122197
|
|
Fractal sequence: count up to successive integers twice.
|
|
14
|
|
|
1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Fractal - deleting the first occurrence of each integer leaves the original sequence. Also, deleting the all 1's leaves the original sequence plus 1. New values occur at square indices. 1's occur at indices m^2+1 and m^2+m+1. Ordinal transform of A122196.
Except for its initial 1, A122197 is the natural fractal sequence of A002620; that is, A122197(n+1) is the number of the row of A194061 that contains n. See A194029 for definition of natural fractal sequence. - Clark Kimberling, Aug 12 2011
From Johannes W. Meijer, Sep 09 2013: (Start)
Triangle read by rows formed from antidiagonals of triangle A002260.
The row sums equal A008805(n-1) and the antidiagonal sums equal A211534(n+5). (End)
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
|
|
FORMULA
|
From Boris Putievskiy, Sep 09 2013: (Start)
a(n) = (A001477(n-1) mod A000194(n-1)) + 1 for n>= 2 with a(1) = 1.
a(n) = ((n - 1) mod (t+1)) + 1, where t = floor((sqrt(4*n-3)-1)/2). -
From Johannes W. Meijer, Sep 09 2013: (Start)
T(n, k) = k for n >= 1 and 1 <= k <= (n+1)/2; T(n, k) = 0 elsewhere.
T(n, k) = A002260(n-k, k) (End)
a(n) = n - floor(sqrt(n) + 1/2)*floor(sqrt(n-1)). - Ridouane Oudra, Jun 08 2020
a(n) = A339399(2n-1). - Wesley Ivan Hurt, Jan 09 2022
|
|
EXAMPLE
|
The first few rows of the sequence a(n) as a triangle T(n, k):
n/k 1 2 3
1 1
2 1
3 1, 2
4 1, 2
5 1, 2, 3
6 1, 2, 3
|
|
MAPLE
|
From Johannes W. Meijer, Sep 09 2013: (Start)
a := proc(n) local t: t := floor((sqrt(4*n-3)-1)/2): (n-1) mod (t+1) + 1 end: seq(a(n), n=1..105); # End first program
T := proc(n, k): if n < 1 then return(0) elif k < 1 or k> floor((n+1)/2) then return(0) else k fi: end: seq(seq(T(n, k), k=1..floor((n+1)/2)), n=1..19); # End second program. (End)
|
|
MATHEMATICA
|
With[{c=Table[Range[n], {n, 10}]}, Flatten[Riffle[c, c]]] (* Harvey P. Dale, Apr 19 2013 *)
|
|
PROG
|
(Haskell)
import Data.List (transpose, genericIndex)
a122197 n k = genericIndex (a122197_row n) (k - 1)
a122197_row n = genericIndex a122197_tabf (n - 1)
a122197_tabf = concat $ transpose [a002260_tabl, a002260_tabl]
a122197_list = concat a122197_tabf
-- Reinhard Zumkeller, Aug 07 2015, Jul 19 2012
(PARI) a(n)=n - (sqrtint(4*n) + 1)\2*sqrtint(n-1) \\ Charles R Greathouse IV, Jun 08 2020
|
|
CROSSREFS
|
Cf. A122196, A000290, A033638, A002260, A001477, A000194, A339399.
Sequence in context: A237260 A249727 A023118 * A030718 A227779 A194066
Adjacent sequences: A122194 A122195 A122196 * A122198 A122199 A122200
|
|
KEYWORD
|
easy,nonn,tabf
|
|
AUTHOR
|
Franklin T. Adams-Watters, Aug 25 2006
|
|
STATUS
|
approved
|
|
|
|