login
A194066
Natural fractal sequence of A087483.
2
1, 1, 2, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1
OFFSET
1,3
COMMENTS
See A194029 for definitions of natural fractal sequence and natural interspersion.
MATHEMATICA
z = 70;
c[k_] := 1 + Floor[(1/3) k^2];
c = Table[c[k], {k, 1, z}] (* A087483 *)
f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
f = Table[f[n], {n, 1, 300}] (* A194066 *)
r[n_] := Flatten[Position[f, n]]
t[n_, k_] := r[n][[k]]
TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]]
p = Flatten[Table[t[k, n - k + 1], {n, 1, 14}, {k, 1, n}]] (* A194067 *)
q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 90}]] (* A194068 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 14 2011
STATUS
approved