login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A119286
Alternating sum of the fifth powers of the first n Fibonacci numbers.
9
0, -1, 0, -32, 211, -2914, 29854, -341439, 3742662, -41692762, 461591613, -5122467836, 56794896388, -629924960005, 6985721085652, -77473909014348, 859194263419359, -9528629686028398, 105674040835291026, -1171943417651373875, 12997050199917354250, -144139501695851560726, 1598531543102764228825, -17727986584911448406232, 196606383515036414871336, -2180398207207766329269289
OFFSET
0,4
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., 3402, 277, 34, 2, 1, 0, [0], -1, 0, -32, 211, -2914, 29854, ... This is A098531-reversed followed by A119286.
FORMULA
Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} (-1)^k F(k)^5.
Closed form: a(n) = (-1)^n (1/275)(F(5n+1) + 2 F(5n+3)) - (1/10) F(3n+2) + (-1)^n (2/5) F(n-1) - 7/22; here F(5n+1) + 2 F(5n+3) = A001060(5n+1) = A013655(5n+2).
Recurrence: a(n) + 7 a(n-1) - 48 a(n-2) - 20 a(n-3) + 100 a(n-4) - 32 a(n-5) - 9 a(n-6) + a(n-7) = 0.
G.f.: A(x) = (-x - 7 x^2 + 16 x^3 + 7 x^4 - x^5)/(1 + 7 x - 48 x^2 - 20 x^3 + 100 x^4 - 32 x^5 - 9 x^6 + x^7) = -x(1 + 7 x - 16 x^2 - 7 x^3 + x^4)/((1 - x)(1 + x - x^2)(1 - 4 x - x^2)(1 + 11 x - x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[k]^5, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[ -k]^5, {k, 1, -n - 1} ] ]
LinearRecurrence[{-7, 48, 20, -100, 32, 9, -1}, {0, -1, 0, -32, 211, -2914, 29854}, 30] (* Harvey P. Dale, Jun 24 2018 *)
KEYWORD
sign,easy
AUTHOR
Stuart Clary, May 13 2006
STATUS
approved