login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternating sum of the fifth powers of the first n Fibonacci numbers.
9

%I #15 Jun 24 2018 12:47:53

%S 0,-1,0,-32,211,-2914,29854,-341439,3742662,-41692762,461591613,

%T -5122467836,56794896388,-629924960005,6985721085652,-77473909014348,

%U 859194263419359,-9528629686028398,105674040835291026,-1171943417651373875,12997050199917354250,-144139501695851560726,1598531543102764228825,-17727986584911448406232,196606383515036414871336,-2180398207207766329269289

%N Alternating sum of the fifth powers of the first n Fibonacci numbers.

%C Natural bilateral extension (brackets mark index 0): ..., 3402, 277, 34, 2, 1, 0, [0], -1, 0, -32, 211, -2914, 29854, ... This is A098531-reversed followed by A119286.

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (-7,48,20,-100,32,9,-1)

%F Let F(n) be the Fibonacci number A000045(n).

%F a(n) = Sum_{k=1..n} (-1)^k F(k)^5.

%F Closed form: a(n) = (-1)^n (1/275)(F(5n+1) + 2 F(5n+3)) - (1/10) F(3n+2) + (-1)^n (2/5) F(n-1) - 7/22; here F(5n+1) + 2 F(5n+3) = A001060(5n+1) = A013655(5n+2).

%F Recurrence: a(n) + 7 a(n-1) - 48 a(n-2) - 20 a(n-3) + 100 a(n-4) - 32 a(n-5) - 9 a(n-6) + a(n-7) = 0.

%F G.f.: A(x) = (-x - 7 x^2 + 16 x^3 + 7 x^4 - x^5)/(1 + 7 x - 48 x^2 - 20 x^3 + 100 x^4 - 32 x^5 - 9 x^6 + x^7) = -x(1 + 7 x - 16 x^2 - 7 x^3 + x^4)/((1 - x)(1 + x - x^2)(1 - 4 x - x^2)(1 + 11 x - x^2)).

%t a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[k]^5, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[ -k]^5, {k, 1, -n - 1} ] ]

%t LinearRecurrence[{-7,48,20,-100,32,9,-1},{0,-1,0,-32,211,-2914,29854},30] (* _Harvey P. Dale_, Jun 24 2018 *)

%Y Cf. A098531, A119282, A119283, A119284, A119285, A119287, A128696, A128698.

%K sign,easy

%O 0,4

%A _Stuart Clary_, May 13 2006