login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A128698 Alternating sum of the eighth powers of the first n Fibonacci numbers. 9
0, -1, 0, -256, 6305, -384320, 16392896, -799337825, 37023521536, -1748770383360, 81985167507265, -3854603638194816, 181029655256841600, -8505521232849819841, 399560845889490455040, -18771170453838609544960, 881839776158402870049761, -41427800130507702988683200, 1946222939243803281837279296, -91431083130550578762727373345, 4295314095871701743501398017280 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Natural bilateral extension (brackets mark index 0): ..., -16392896, 384320, -6305, 256, 0, 1, 0, [0], -1, 0, -256, 6305, -384320, 16392896, ... This is (-A128698)-reversed followed by A128698.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..595

FORMULA

Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).

a(n) = Sum_{k=1..n} (-1)^k F(k)^8.

Closed form: a(n) = (-1)^n L(8n+4)/4375 - 2 L(6n+3)/625 + (-1)^n 28 L(4n+2)/1875 - 56 L(2n+1)/625 + (-1)^n 7/125.

Factored closed form: a(n) = (-1)^n (1/21) F(n-2) F(n) F(n+1) F(n+3) (3 F(n)^2 F(n+1)^2 + 4).

Recurrence: a(n) + 34 a(n-1) - 714 a(n-2) - 4641 a(n-3) + 12376 a(n-4) + 12376 a(n-5) - 4641 a(n-6) - 714 a(n-7) + 34 a(n-8) + a(n-9) = 0.

G.f.: A(x) = (-x - 34 x^2 + 458 x^3 + 2242 x^4 + 458 x^5 - 34 x^6 - x^7)/(1 + 34 x - 714 x^2 - 4641 x^3 + 12376 x^4 + 12376 x^5 - 4641 x^6 - 714 x^7 + 34 x^8 + x^9) = -x(1 + 34 x - 458 x^2 - 2242 x^3 - 458 x^4 + 34 x^5 + x^6)/((1 + x)(1 - 3 x + x^2)(1 + 7 x + x^2)(1 - 18 x + x^2)(1 + 47 x + x^2)).

MATHEMATICA

a[ n_Integer ] := If[ n >= 0, Sum[ (-1)^k Fibonacci[ k ]^8, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[ -k ]^8, {k, 1, -n - 1} ] ]

Accumulate[Times@@@Partition[Riffle[Fibonacci[Range[0, 20]]^8, {1, -1}, {2, -1, 2}], 2]] (* Harvey P. Dale, May 04 2016 *)

PROG

(PARI) a(n) = sum(k=1, n, (-1)^k*fibonacci(k)^8); \\ Michel Marcus, Dec 10 2016

(MAGMA) [(&+[(-1)^k*Fibonacci(k)^8: k in [0..n]]): n in [0..30]]; // G. C. Greubel, Jan 17 2018

CROSSREFS

Cf. A128697, A119282, A119283, A119284, A119285, A119286, A119287, A128696.

Sequence in context: A204567 A077072 A283339 * A283576 A203284 A321832

Adjacent sequences:  A128695 A128696 A128697 * A128699 A128700 A128701

KEYWORD

sign,easy

AUTHOR

Stuart Clary, Mar 23 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 18:30 EST 2020. Contains 332082 sequences. (Running on oeis4.)