login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Alternating sum of the eighth powers of the first n Fibonacci numbers.
9

%I #15 Sep 08 2022 08:45:30

%S 0,-1,0,-256,6305,-384320,16392896,-799337825,37023521536,

%T -1748770383360,81985167507265,-3854603638194816,181029655256841600,

%U -8505521232849819841,399560845889490455040,-18771170453838609544960,881839776158402870049761,-41427800130507702988683200,1946222939243803281837279296,-91431083130550578762727373345,4295314095871701743501398017280

%N Alternating sum of the eighth powers of the first n Fibonacci numbers.

%C Natural bilateral extension (brackets mark index 0): ..., -16392896, 384320, -6305, 256, 0, 1, 0, [0], -1, 0, -256, 6305, -384320, 16392896, ... This is (-A128698)-reversed followed by A128698.

%H G. C. Greubel, <a href="/A128698/b128698.txt">Table of n, a(n) for n = 0..595</a>

%F Let F(n) be the Fibonacci number A000045(n) and let L(n) be the Lucas number A000032(n).

%F a(n) = Sum_{k=1..n} (-1)^k F(k)^8.

%F Closed form: a(n) = (-1)^n L(8n+4)/4375 - 2 L(6n+3)/625 + (-1)^n 28 L(4n+2)/1875 - 56 L(2n+1)/625 + (-1)^n 7/125.

%F Factored closed form: a(n) = (-1)^n (1/21) F(n-2) F(n) F(n+1) F(n+3) (3 F(n)^2 F(n+1)^2 + 4).

%F Recurrence: a(n) + 34 a(n-1) - 714 a(n-2) - 4641 a(n-3) + 12376 a(n-4) + 12376 a(n-5) - 4641 a(n-6) - 714 a(n-7) + 34 a(n-8) + a(n-9) = 0.

%F G.f.: A(x) = (-x - 34 x^2 + 458 x^3 + 2242 x^4 + 458 x^5 - 34 x^6 - x^7)/(1 + 34 x - 714 x^2 - 4641 x^3 + 12376 x^4 + 12376 x^5 - 4641 x^6 - 714 x^7 + 34 x^8 + x^9) = -x(1 + 34 x - 458 x^2 - 2242 x^3 - 458 x^4 + 34 x^5 + x^6)/((1 + x)(1 - 3 x + x^2)(1 + 7 x + x^2)(1 - 18 x + x^2)(1 + 47 x + x^2)).

%t a[ n_Integer ] := If[ n >= 0, Sum[ (-1)^k Fibonacci[ k ]^8, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[ -k ]^8, {k, 1, -n - 1} ] ]

%t Accumulate[Times@@@Partition[Riffle[Fibonacci[Range[0,20]]^8,{1,-1},{2,-1,2}],2]] (* _Harvey P. Dale_, May 04 2016 *)

%o (PARI) a(n) = sum(k=1, n, (-1)^k*fibonacci(k)^8); \\ _Michel Marcus_, Dec 10 2016

%o (Magma) [(&+[(-1)^k*Fibonacci(k)^8: k in [0..n]]): n in [0..30]]; // _G. C. Greubel_, Jan 17 2018

%Y Cf. A128697, A119282, A119283, A119284, A119285, A119286, A119287, A128696.

%K sign,easy

%O 0,4

%A _Stuart Clary_, Mar 23 2007