login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116428
The number of n-almost primes less than or equal to 8^n, starting with a(0)=1.
8
1, 4, 22, 125, 669, 3410, 16677, 78369, 359110, 1612613, 7133274, 31185350, 135062165, 580556958, 2480278767, 10542976739, 44626102826, 188215850830, 791374442571, 3318478309647, 13882441625034, 57952990683107
OFFSET
0,2
MATHEMATICA
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]];
Table[ AlmostPrimePi[n, 8^n], {n, 14}] (* Eric W. Weisstein, Feb 07 2006 *)
PROG
(PARI)
almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);
a(n) = if(n == 0, 1, almost_prime_count(8^n, n)); \\ Daniel Suteu, Jul 10 2023
KEYWORD
nonn,more
AUTHOR
Robert G. Wilson v, Feb 14 2006
EXTENSIONS
a(15)-a(18) from Donovan Johnson, Oct 01 2010
a(19)-a(21) from Daniel Suteu, Jul 10 2023
STATUS
approved