login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of n-almost primes less than or equal to 8^n, starting with a(0)=1.
8

%I #13 Jul 10 2023 19:52:37

%S 1,4,22,125,669,3410,16677,78369,359110,1612613,7133274,31185350,

%T 135062165,580556958,2480278767,10542976739,44626102826,188215850830,

%U 791374442571,3318478309647,13882441625034,57952990683107

%N The number of n-almost primes less than or equal to 8^n, starting with a(0)=1.

%t AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]];

%t Table[ AlmostPrimePi[n, 8^n], {n, 14}] (* _Eric W. Weisstein_, Feb 07 2006 *)

%o (PARI)

%o almost_prime_count(N, k) = if(k==1, return(primepi(N))); (f(m, p, k, j=0) = my(c=0, s=sqrtnint(N\m, k)); if(k==2, forprime(q=p, s, c += primepi(N\(m*q))-j; j += 1), forprime(q=p, s, c += f(m*q, q, k-1, j); j += 1)); c); f(1, 2, k);

%o a(n) = if(n == 0, 1, almost_prime_count(8^n, n)); \\ _Daniel Suteu_, Jul 10 2023

%Y Cf. A078840, A078841, A078842, A116432, A078843, A116426, A078844, A116427, A078845, A116428, A116429, A116430, A078846, A116431.

%K nonn,more

%O 0,2

%A _Robert G. Wilson v_, Feb 14 2006

%E a(15)-a(18) from _Donovan Johnson_, Oct 01 2010

%E a(19)-a(21) from _Daniel Suteu_, Jul 10 2023