

A115591


Primes p such that the multiplicative order of 2 modulo p is (p1)/2.


17



7, 17, 23, 41, 47, 71, 79, 97, 103, 137, 167, 191, 193, 199, 239, 263, 271, 311, 313, 359, 367, 383, 401, 409, 449, 463, 479, 487, 503, 521, 569, 599, 607, 647, 719, 743, 751, 761, 769, 809, 823, 839, 857, 863, 887, 929, 967, 977, 983, 991, 1009, 1031
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

It appears that this is also the sequence of values of n for which the sum of terms of one period of the base2 MRexpansion (see A136042) of 1/n equals (n1)/2. An example appears in A155072 where one period of the base2 MRexpansion of 1/17 is shown to be {5,1,1,1) with sum 8=(171)/2. [John W. Layman, Jan 19 2009]


LINKS

Klaus Brockhaus, Table of n, a(n) for n=1..1000


MATHEMATICA

fQ[n_] := 1 + 2 MultiplicativeOrder[2, n] == n; Select[ Prime@ Range@ 174, fQ]


PROG

(MAGMA) [ p: p in PrimesUpTo(1031)  r eq 1 and Order(R!2) eq q where q, r is Quotrem(p, 2) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
(PARI) r=2; forprime(p=3, 1500, z=(p1)/znorder(Mod(r, p)); if(z==2, print1(p, ", "))); \\ Joerg Arndt, Jan 12 2011


CROSSREFS

Cf. A001122, A001133.
Cf. A136042, A155072. [John W. Layman, Jan 19 2009]
Sequence in context: A295706 A265792 A322669 * A265810 A026349 A057183
Adjacent sequences: A115588 A115589 A115590 * A115592 A115593 A115594


KEYWORD

nonn


AUTHOR

Don Reble, Mar 11 2006


STATUS

approved



