This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265810 Numerators of upper primes-only best approximates (POBAs) to Pi; see Comments. 7
 7, 17, 23, 41, 167, 211, 431, 563, 569, 619, 1109, 5413, 10427, 16063, 20323, 28843, 47969, 56489, 71399, 75659 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suppose that x > 0. A fraction p/q of primes is an upper primes-only best approximate, and we write "p/q is in U(x)", if p'/q < x < p/q < u/v for all primes u and v such that v < q, where p' is greatest prime < p in case p >= 3. Let q(1) = 2 and let p(1) be the least prime >= x. The sequence U(x) follows inductively: for n >= 1, let q(n) is the least prime q such that x < p/q < p(n)/q(n) for some prime p. Let q(n+1) = q and let p(n+1) be the least prime p such that x < p/q < p(n)/q(n). For a guide to POBAs, lower POBAs, and upper POBAs, see A265759. LINKS EXAMPLE The upper POBAs to Pi start with 7/2, 17/5, 23/7, 41/13, 167/53, 211/67, 431/137. For example, if p and q are primes and q > 67, and p/q > Pi, then 211/67 is closer to Pi than p/q is. MATHEMATICA x = Pi; z = 1000; p[k_] := p[k] = Prime[k]; t = Table[Max[Table[NextPrime[x*p[k], -1]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tL = Select[d, # > 0 &] (* lower POBA *) t = Table[Min[Table[NextPrime[x*p[k]]/p[k], {k, 1, n}]], {n, 1, z}]; d = DeleteDuplicates[t]; tU = Select[d, # > 0 &] (* upper POBA *) v = Sort[Union[tL, tU], Abs[#1 - x] > Abs[#2 - x] &]; b = Denominator[v]; s = Select[Range[Length[b]], b[[#]] == Min[Drop[b, # - 1]] &]; y = Table[v[[s[[n]]]], {n, 1, Length[s]}] (* POBA, A265812/A265813 *) Numerator[tL]   (* A265808 *) Denominator[tL] (* A265809 *) Numerator[tU]   (* A265810 *) Denominator[tU] (* A265811 *) Numerator[y]    (* A265812 *) Denominator[y]  (* A265813 *) CROSSREFS Cf. A000040, A265759, A265808, A265809, A265811, A265812, A265813. Sequence in context: A265792 A322669 A115591 * A026349 A057183 A076293 Adjacent sequences:  A265807 A265808 A265809 * A265811 A265812 A265813 KEYWORD nonn,frac,more AUTHOR Clark Kimberling, Jan 02 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 23 19:33 EDT 2019. Contains 325263 sequences. (Running on oeis4.)