login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001133 Primes p such that the multiplicative order of 2 modulo p is (p-1)/3.
(Formerly M5283 N2299)
18
43, 109, 157, 229, 277, 283, 307, 499, 643, 691, 733, 739, 811, 997, 1021, 1051, 1069, 1093, 1459, 1579, 1597, 1627, 1699, 1723, 1789, 1933, 2179, 2203, 2251, 2341, 2347, 2749, 2917, 3163, 3181, 3229, 3259, 3373, 4027, 4339, 4549, 4597, 4651, 4909, 5101, 5197, 5323, 5413, 5437, 5653, 6037 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

MATHEMATICA

Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[MultiplicativeOrder[2, p] == (p-1)/3, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 10 2015 *)

PROG

(MAGMA) [ p: p in PrimesUpTo(4597) | r eq 1 and Order(R!2) eq q where q, r is Quotrem(p, 3) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008

(PARI) forprime(p=3, 10^4, if(znorder(Mod(2, p))==(p-1)/3, print1(p, ", "))); \\ Joerg Arndt, May 17 2013

CROSSREFS

Cf. A040028, A014752, A059914.

Cf. also A001134, A001135, A001136, A115586, A115591.

Sequence in context: A106923 A115586 A294717 * A292578 A139969 A142055

Adjacent sequences:  A001130 A001131 A001132 * A001134 A001135 A001136

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms and better definition from Don Reble, Mar 11 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 11:02 EDT 2022. Contains 353949 sequences. (Running on oeis4.)