login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001136 Primes p such that the multiplicative order of 2 modulo p is (p-1)/6.
(Formerly M5221 N2271)
11
31, 223, 433, 439, 457, 727, 919, 1327, 1399, 1423, 1471, 1831, 1999, 2017, 2287, 2383, 2671, 2767, 2791, 2953, 3271, 3343, 3457, 3463, 3607, 3631, 3823, 3889, 4129, 4423, 4519, 4567, 4663, 4729, 4759, 5167, 5449, 5503, 5953, 6007, 6079, 6151, 6217, 6271, 6673, 6961, 6967, 7321 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
REFERENCES
M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
MATHEMATICA
Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[MultiplicativeOrder[2, p] == (p - 1)/6, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 10 2015, adapted from PARI *)
PROG
(Magma) [ p: p in PrimesUpTo(6079) | r eq 1 and Order(R!2) eq q where q, r is Quotrem(p, 6) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008
(PARI) forprime(p=3, 10^4, if(znorder(Mod(2, p))==(p-1)/6, print1(p, ", "))); \\ Joerg Arndt, May 17 2013
CROSSREFS
Cf. A001133.
Sequence in context: A183784 A042874 A221448 * A256172 A142939 A229018
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms and better definition from Don Reble, Mar 11 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 09:38 EDT 2024. Contains 374472 sequences. (Running on oeis4.)