The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001136 Primes p such that the multiplicative order of 2 modulo p is (p-1)/6. (Formerly M5221 N2271) 11

%I M5221 N2271 #26 Sep 08 2022 08:44:28

%S 31,223,433,439,457,727,919,1327,1399,1423,1471,1831,1999,2017,2287,

%T 2383,2671,2767,2791,2953,3271,3343,3457,3463,3607,3631,3823,3889,

%U 4129,4423,4519,4567,4663,4729,4759,5167,5449,5503,5953,6007,6079,6151,6217,6271,6673,6961,6967,7321

%N Primes p such that the multiplicative order of 2 modulo p is (p-1)/6.

%D M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A001136/b001136.txt">Table of n, a(n) for n = 1..1000</a>

%t Reap[For[p = 2, p < 10^4, p = NextPrime[p], If[MultiplicativeOrder[2, p] == (p - 1)/6, Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Dec 10 2015, adapted from PARI *)

%o (Magma) [ p: p in PrimesUpTo(6079) | r eq 1 and Order(R!2) eq q where q,r is Quotrem(p,6) where R is ResidueClassRing(p) ]; // _Klaus Brockhaus_, Dec 02 2008

%o (PARI) forprime(p=3,10^4,if(znorder(Mod(2,p))==(p-1)/6,print1(p,", "))); \\ _Joerg Arndt_, May 17 2013

%Y Cf. A001133.

%K nonn

%O 1,1

%A _N. J. A. Sloane_

%E More terms and better definition from _Don Reble_, Mar 11 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 11:22 EDT 2024. Contains 375042 sequences. (Running on oeis4.)