The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001135 Primes p such that the multiplicative order of 2 modulo p is (p-1)/5. (Formerly M5424 N2356) 10
 251, 571, 971, 1181, 1811, 2011, 2381, 2411, 3221, 3251, 3301, 3821, 4211, 4861, 4931, 5021, 5381, 5861, 6221, 6571, 6581, 8461, 8501, 9091, 9461, 10061, 10211, 10781, 11251, 11701, 11941, 12541, 13171, 13381, 13421, 13781, 14251, 15541, 16091, 16141, 16451, 16661, 16691, 16811, 17291 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 MAPLE q:= p-> isprime(p) and numtheory[order](2, p)=(p-1)/5: select(q, [\$2..20000])[]; # Alois P. Heinz, Dec 12 2023 MATHEMATICA Reap[For[p = 2, p <= 18000, p = NextPrime[p], If[ MultiplicativeOrder[2, p] == (p-1)/5, Sow[p]]]][[2, 1]] (* James C. McMahon, Dec 12 2023 *) PROG (Magma) [ p: p in PrimesUpTo(15541) | r eq 1 and Order(R!2) eq q where q, r is Quotrem(p, 5) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008 (PARI) forprime(p=3, 10^5, if(znorder(Mod(2, p))==(p-1)/5, print1(p, ", "))); \\ Joerg Arndt, May 17 2013 CROSSREFS Cf. A001133, A001134, A001136, A115586, A115591. Sequence in context: A142924 A346493 A107696 * A052232 A179231 A108833 Adjacent sequences: A001132 A001133 A001134 * A001136 A001137 A001138 KEYWORD nonn AUTHOR N. J. A. Sloane EXTENSIONS More terms and better definition from Don Reble, Mar 11 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 18:29 EDT 2024. Contains 375144 sequences. (Running on oeis4.)