login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001135 Primes p such that the multiplicative order of 2 modulo p is (p-1)/5.
(Formerly M5424 N2356)
10
251, 571, 971, 1181, 1811, 2011, 2381, 2411, 3221, 3251, 3301, 3821, 4211, 4861, 4931, 5021, 5381, 5861, 6221, 6571, 6581, 8461, 8501, 9091, 9461, 10061, 10211, 10781, 11251, 11701, 11941, 12541, 13171, 13381, 13421, 13781, 14251, 15541, 16091, 16141, 16451, 16661, 16691, 16811, 17291 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 59.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

PROG

(MAGMA) [ p: p in PrimesUpTo(15541) | r eq 1 and Order(R!2) eq q where q, r is Quotrem(p, 5) where R is ResidueClassRing(p) ]; // Klaus Brockhaus, Dec 02 2008

(PARI) forprime(p=3, 10^5, if(znorder(Mod(2, p))==(p-1)/5, print1(p, ", "))); \\ Joerg Arndt, May 17 2013

CROSSREFS

Cf. A001133, A001134, A001136, A115586, A115591.

Sequence in context: A142742 A142924 A107696 * A052232 A179231 A108833

Adjacent sequences:  A001132 A001133 A001134 * A001136 A001137 A001138

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms and better definition from Don Reble, Mar 11 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 22 21:29 EDT 2021. Contains 345393 sequences. (Running on oeis4.)