OFFSET
0,3
COMMENTS
Take the rooted ternary tree of depth n, with (3^(n+1) - 1) / 2 labeled nodes. Let the number of rooted subtrees be a(n). For example, for n = 1 the a(2) = 8 subtrees are:
R...R...R...R......R.......R...R.......R
.../....|....\..../.\...../|...|\...../|\
..o.....o.....o..o...o...o.o...o.o...o.o.o
Then a(n+1) = (1+a(n))^3.
LINKS
Geir Agnarsson, Elie Alhajjar, and Aleyah Dawkins, On locally finite ordered rooted trees and their rooted subtrees, arXiv:2312.11379 [math.CO], 2023.
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, alternative link.
FORMULA
As for A004019, it follows from Aho and Sloane that there is a constant c such that a(n) is the nearest integer to c^(3^n). In fact a(n) = nearest integer to b^(3^n) - 1 where b = 2.0804006677503193521177452323719035237099784935372250879749088464344434056773788...
MATHEMATICA
{0}~Join~RecurrenceTable[{a[n]==(a[n-1]+1)^3, a[0]==1}, a, {n, 0, 8}] (* Vaclav Kotesovec, May 21 2015 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paolo Bonzini, Mar 15 2006; corrected Apr 06 2006 and Jan 19 2007
EXTENSIONS
Name edited by Michael De Vlieger, Dec 21 2023
STATUS
approved