login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115514
Triangle read by rows: row n >= 1 lists first n positive terms of A004526 (integers repeated) in decreasing order.
6
1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, 4, 3, 3, 2, 2, 1, 1, 4, 4, 3, 3, 2, 2, 1, 1, 5, 4, 4, 3, 3, 2, 2, 1, 1, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1
OFFSET
1,4
COMMENTS
T(n,k) = number of 2-element subsets of {1,2,...,n+2} such that the absolute difference of the elements is k+1, where 1 <= k < = n. E.g., T(7,3) = 3, the subsets are {1,5}, {2,6}, and {3,7}. - Christian Barrientos, Jun 27 2022
FORMULA
Sum_{k=1..n} T(n, k) = A002620(n+1) (row sums). - Gary W. Adamson, Oct 25 2007
T(n, k) = [x^k] p(n), where p(n) are partial Gaussian polynomials (A008967) defined by p(n) = Sum_{k=0..n} Sum_{j=0..n-k} even(k)*x^j, and even(k) = 1 if k is even and otherwise 0. We assume offset 0. - Peter Luschny, Jun 03 2021
T(n, k) = floor((n+2-k)/2). - Christian Barrientos, Jun 27 2022
From G. C. Greubel, Mar 14 2024: (Start)
T(n, k) = A128623(n, k)/n.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A142150(n+1).
Sum_{k=1..floor((n+1)/2)} T(n-k+1, k) = A008805(n-1).
Sum_{k=1..floor((n+1)/2)} (-1)^(k-1)*T(n-k+1, k) = A002265(n+3). (End)
EXAMPLE
Triangle begins as, for n >= 1, 1 <= k <= n,
1;
1, 1;
2, 1, 1;
2, 2, 1, 1;
3, 2, 2, 1, 1;
3, 3, 2, 2, 1, 1;
4, 3, 3, 2, 2, 1, 1;
...
MAPLE
# Assuming offset 0:
Even := n -> (1 + (-1)^n)/2: # Iverson's even.
p := n -> add(add(Even(k)*x^j, j = 0..n-k), k = 0..n):
for n from 0 to 9 do seq(coeff(p(n), x, k), k=0..n) od; # Peter Luschny, Jun 03 2021
MATHEMATICA
Table[Floor[(n-k+2)/2], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Mar 14 2024 *)
PROG
(Magma) [Floor((n-k+2)/2): k in [1..n], n in [1..15]]; // G. C. Greubel, Mar 14 2024
(SageMath) flatten([[(n-k+2)//2 for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Mar 14 2024
CROSSREFS
Cf. A002620 (row sums), A008805 (diagonal sums), A142150 (alternating row sums)
Sequence in context: A102523 A323023 A083415 * A326038 A122632 A176809
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Mar 07 2006
EXTENSIONS
Edited by N. J. A. Sloane, Mar 23 2008 and Dec 15 2017
STATUS
approved