login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115514 Triangle read by rows: row n >= 1 lists first n positive members of A004526 (integers repeated) in decreasing order. 4
1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, 4, 3, 3, 2, 2, 1, 1, 4, 4, 3, 3, 2, 2, 1, 1, 5, 4, 4, 3, 3, 2, 2, 1, 1, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 7, 7, 6, 6, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Sum of terms in row n = A002620(n+1). - Gary W. Adamson, Oct 25 2007

Equals A000012 * A128174 - Gary W. Adamson, Oct 25 2007

LINKS

Table of n, a(n) for n=1..105.

FORMULA

T(n, k) = [x^k] p(n), where p(n) are partial Gaussian polynomials (A008967) defined by p(n) = Sum_{k=0..n} Sum_{j=0..n-k} even(k)*x^j, and even(k) = 1 if k is even and otherwise 0. We assume offset 0. - Peter Luschny, Jun 03 2021

EXAMPLE

Triangle begins:

{1}, <- this is row 1

{1, 1},

{2, 1, 1},

{2, 2, 1, 1},

{3, 2, 2, 1, 1},

{3, 3, 2, 2, 1, 1},

{4, 3, 3, 2, 2, 1, 1}

...

MAPLE

# Assuming offset 0:

Even := n -> (1 + (-1)^n)/2: # Iverson's even.

p := n -> add(add(Even(k)*x^j, j = 0..n-k), k = 0..n):

for n from 0 to 9 do seq(coeff(p(n), x, k), k=0..n) od; # Peter Luschny, Jun 03 2021

CROSSREFS

Cf. A008967, A000012, A000073, A004526, A128174, A002620.

Sequence in context: A102523 A323023 A083415 * A326038 A122632 A176809

Adjacent sequences:  A115511 A115512 A115513 * A115515 A115516 A115517

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula, Mar 07 2006

EXTENSIONS

Edited by N. J. A. Sloane, Mar 23 2008 and Dec 15 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 08:42 EDT 2021. Contains 346294 sequences. (Running on oeis4.)