login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122632
Table T(n,k) = number of initial segments of Beatty sequences for numbers > 1 of length k, cutting sequence so that all terms are < n.
0
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 1, 3, 2, 2, 3, 1, 1, 4, 3, 2, 3, 4, 1, 1, 4, 3, 3, 3, 3, 4, 1, 1, 5, 3, 4, 2, 4, 3, 5, 1, 1, 5, 4, 3, 3, 3, 3, 4, 5, 1, 1, 6, 4, 4, 5, 2, 5, 4, 4, 6, 1, 1, 6, 4, 4, 4, 4, 4, 4, 4, 4, 6, 1, 1, 7, 5, 5, 4, 6, 2, 6, 4, 5, 5, 7, 1, 1, 7, 5, 5, 4, 6, 4, 4, 6, 4, 5, 5, 7, 1
OFFSET
1,5
COMMENTS
Enumerate all rational numbers q in [0,1) with denominator <= n. T(n,k) is the number of these with floor(n*q) = k-1. Problem suggested by David W. Wilson.
EXAMPLE
T(6,3) = 2; the sequences for n=6, k=3 are 0,2,4 and 0,2,5. The sequence 0,1,3 is not counted because the next term of a Beatty sequence beginning 0,1,3 must be 4 or 5, so 0,1,3 is not a Beatty sequence truncated to numbers less than 6.
MATHEMATICA
Flatten@Table[Count[Select[Union@Flatten@Outer[Divide, Range[n + 1] - 1, Range[n]] , # <= 1 &], _?(Floor[n #] == k &)], {n, 12}, {k, n}] (* Birkas Gyorgy *)
CROSSREFS
Cf. A002088 (row sums), A006842/A006843 (Farey fractions).
Sequence in context: A083415 A115514 A326038 * A176809 A317815 A318423
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved