|
|
A122632
|
|
Table T(n,k) = number of initial segments of Beatty sequences for numbers > 1 of length k, cutting sequence so that all terms are < n.
|
|
0
|
|
|
1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 1, 3, 2, 2, 3, 1, 1, 4, 3, 2, 3, 4, 1, 1, 4, 3, 3, 3, 3, 4, 1, 1, 5, 3, 4, 2, 4, 3, 5, 1, 1, 5, 4, 3, 3, 3, 3, 4, 5, 1, 1, 6, 4, 4, 5, 2, 5, 4, 4, 6, 1, 1, 6, 4, 4, 4, 4, 4, 4, 4, 4, 6, 1, 1, 7, 5, 5, 4, 6, 2, 6, 4, 5, 5, 7, 1, 1, 7, 5, 5, 4, 6, 4, 4, 6, 4, 5, 5, 7, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
COMMENTS
|
Enumerate all rational numbers q in [0,1) with denominator <= n. T(n,k) is the number of these with floor(n*q) = k-1. Problem suggested by David W. Wilson.
|
|
LINKS
|
|
|
EXAMPLE
|
T(6,3) = 2; the sequences for n=6, k=3 are 0,2,4 and 0,2,5. The sequence 0,1,3 is not counted because the next term of a Beatty sequence beginning 0,1,3 must be 4 or 5, so 0,1,3 is not a Beatty sequence truncated to numbers less than 6.
|
|
MATHEMATICA
|
Flatten@Table[Count[Select[Union@Flatten@Outer[Divide, Range[n + 1] - 1, Range[n]] , # <= 1 &], _?(Floor[n #] == k &)], {n, 12}, {k, n}] (* Birkas Gyorgy *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|