|
|
A122631
|
|
a(n+1) = gpf(2*prime(a(n-1)) + prime(a(n))) where gpf = greatest prime factor, with a(0)=1, a(1)=2.
|
|
1
|
|
|
1, 2, 7, 23, 13, 23, 11, 197, 421, 113, 13, 17, 47, 47, 211, 191, 1249, 499, 1039, 79, 97, 23, 367, 881, 337, 409, 2447, 277, 857, 487, 61, 83, 997, 53, 16007, 1033, 43, 16657, 101, 67, 19, 3, 139, 269, 107, 109, 197, 2399, 7927, 41257, 47, 103, 197, 179, 11, 719, 5503
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This sequence is eventually cyclic with period 360.
|
|
LINKS
|
|
|
EXAMPLE
|
2*prime(7) + prime(23) = 2*17 + 83 = 117 = 3*3*13, so a(4) = gpf(117) = 13.
|
|
MATHEMATICA
|
Transpose[NestList[{#[[2]], FactorInteger[2Prime[ #[[1]]] +Prime[ #[[2]]]][[ -1, 1]]} &, {1, 2}, 900]][[2]]
|
|
PROG
|
(Haskell)
a122631 n = a122631_list !! (n-1)
a122631_list =
1 : 2 : map a006530 (zipWith (+) (map ((2 *) . a000040) a122631_list)
(map a000040 (tail a122631_list)))
(PARI) a=[1, 2]; for(n=2, 50, my(f=factor(2*prime(a[n-1])+prime(a[n]))[, 1]); a=concat(a, f[#f])); a \\ Charles R Greathouse IV, Jun 19 2013
|
|
CROSSREFS
|
|
|
KEYWORD
|
nice,nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|