login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083415 Triangle read by rows: T(n,k) is defined as follows. Write the numbers from 1 to n^2 consecutively in n rows of length n; T(n,k) = number of primes in k-th row. 6
0, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 1, 2, 2, 1, 3, 2, 2, 2, 1, 1, 4, 2, 2, 1, 2, 2, 2, 4, 2, 3, 2, 1, 3, 1, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 4, 4, 2, 2, 3, 2, 2, 3, 2, 1, 5, 3, 3, 3, 2, 2, 3, 2, 2, 4, 1, 5, 4, 2, 4, 2, 3, 3, 1, 4, 2, 2, 2, 6, 3, 3, 3, 3, 3, 3, 3, 3, 1, 3, 2, 3, 6, 3, 4, 3, 3, 4, 2, 4 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Sum(T(n,k): 1<=k<=n) = A038107(n); T(n,1)=A000720(n); T(n,2)=A060715(n) for n>1. - Reinhard Zumkeller, Jan 07 2004

REFERENCES

Paulo Ribenboim, "The Little Book Of Big Primes," Springer-Verlag, NY 1991, page 185.

LINKS

T. D. Noe, Rows n=1..100 of triangle, flattened

EXAMPLE

{0}

{1, 1}

{2, 1, 1} from / 1 2 3 / 4 5 6 / 7 8 9 /

{2, 2, 1, 1}

{3, 1, 2, 2, 1}

{3, 2, 2, 2, 1, 1}

MATHEMATICA

Table[PrimePi[m n]-PrimePi[(m-1) n], {n, 17}, {m, n}]

PROG

(Haskell)

a083415 n k = a083415_row n !! (k-1)

a083415_row n = f n a010051_list where

   f 0 _     = []

   f k chips = (sum chin) : f (k - 1) chips' where

     (chin, chips') = splitAt n chips

a083415_tabl = map a083415_row [1..]

-- Reinhard Zumkeller, Jun 10 2012

CROSSREFS

Cf. A083382, A083414, A092556, A092557.

Cf. A139325.

Cf. A010051.

Sequence in context: A174545 A102523 A323023 * A115514 A326038 A122632

Adjacent sequences:  A083412 A083413 A083414 * A083416 A083417 A083418

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, following a suggestion of Wouter Meeussen, Jun 10 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 30 12:10 EDT 2020. Contains 333125 sequences. (Running on oeis4.)