login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115169
Integers b > 0 for which there exists a positive integer a <= b such that (a^2 + b^2)/(1 + ab) is an integer.
2
1, 8, 27, 30, 64, 112, 125, 216, 240, 343, 418, 512, 729, 1000, 1020, 1331, 1560, 1728, 2133, 2197, 2744, 3120, 3375, 4096, 4913, 5822, 5832, 6859, 7770, 8000, 9261, 10648, 12167, 13824, 15625, 16256, 16800, 17576, 18957, 19683
OFFSET
1,2
COMMENTS
All positive cubes are in this sequence.
Indeed, if b = k^3, then for a = k, we have a^2 + b^2 = k^2 + k^6 = (1 + k^4)*k^2 = (a*b + 1)*a^2. More generally, if the ratio (a^2 + b^2)/(a*b + 1) is an integer, it is equal to gcd(a,b)^2, thus in particular a perfect square. (This was Question 6 in the 1988 IMO.) All solutions (a,b) are member of a sequence {(x(n), x(n+1)); n = 1,2,...} where x = (0, k, k^3, k^5 - k, ...) with x(n+1) = k^2*x(n) - x(n-1) and some k >= 2, cf. A052530 for k = 2, A065100 for k = 3. (One might consider >= 0 instead > 0 in the definition, but a = 0 yields a solution for any b.) - M. F. Hasler, Jun 12 2019
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..500
Steve Chow, You, Me and The Legend of Question Six, BlackPenRedPen, YouTube, Apr 20 2020.
I. Lauko, G. Pinter and L. Pinter, Another Step Further... On a Problem of the 1988 IMO, Math. Mag. 79 (2006), 45-53.
Simon Pampena, The Legend of Question Six, Numberphile, YouTube, Aug 16 2016.
EXAMPLE
(2^2+8^2)/(1+2*8) = 68/17 = 4, an integer, so 8 is a term of the series.
From M. F. Hasler, Jun 12 2019: (Start)
The list of solutions starts:
a b a^2+b^2 a*b+1 ratio
----------------------------------------
1 1 2 2 1
8 2 68 17 4
27 3 738 82 9
30 8 964 241 4
64 4 4112 257 16
112 30 13444 3361 4
125 5 15650 626 25
216 6 46692 1297 36
240 27 58329 6481 9
343 7 117698 2402 49
418 112 187268 46817 4
512 8 262208 4097 64
729 9 531522 6562 81
1000 10 1000100 10001 100
1020 64 1044496 65281 16
(End)
PROG
(PARI) isok(n) = for(m=0, n, if (denominator((m^2+n^2)/(1+m*n))==1, return(1))); return (0); \\ Michel Marcus, Sep 18 2017
(PARI) is_A115169(n)=for(a=1, n\3+1, (a^2+n^2)%(1+a*n)||return(1)) \\ M. F. Hasler, Jun 12 2019
(PARI) is(n)=my(s=sqrtnint(n, 3), n2=n^2); for(b=1, s, if((n2+b^2)%(n*b+1)==0, return(1))); for(K=2, sqrtint((n2+(s+1)^2)\(n*s+n+1)), my(k=K^2); if(issquare(k^2*n2-4*n2+4*k), return(1))); 0 \\ Charles R Greathouse IV, Nov 08 2021
CROSSREFS
Cf. A000578 (cubes), A052530 (subsequence of terms for ratio 2^2, for n >= 2), A065100 (subsequence of terms for ratio 3^2).
Sequence in context: A070496 A373837 A304636 * A070495 A270421 A056729
KEYWORD
nonn
AUTHOR
John W. Layman, Mar 03 2006
EXTENSIONS
Edited by M. F. Hasler, Jun 12 2019
STATUS
approved